Файл: Лекция Принципы управления 2 Общие понятия 2 Лекция Статический режим сау 7.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 02.05.2024

Просмотров: 166

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Содержание

Лекция 1. Принципы управления

1.1. Общие понятия

Лекция 2. Статический режим САУ

2.1. Основные виды САУ

Лекция 3. Динамический режим САУ

3.1. Динамический режим САУ. Уравнение динамики

3.3. Передаточная функция  В ТАУ часто используют операторную форму записи дифференциальных уравнений. При этом вводится понятие дифференциального оператора p = d/dt так, что, dy/dt = py, а pn = dn/dtn. Это лишь другое обозначение операции дифференцирования. Обратная дифференцированию операция интегрирования записывается как 1/p. В операторной форме исходное дифференциальное уравнение записывается как алгебраическое: aop(n)y + a1p(n-1)y + ... + any = (aop(n) + a1p(n-1) + ... + an)y = (bop(m) + b1p(m-1) + ... + bm)uНе надо путать эту форму записи с операционным исчислением хотя бы потому, что здесь используются непосредственно функции времени y(t), u(t) (оригиналы), а не их изображения Y(p), U(p), получаемые из оригиналов по формуле преобразования Лапласа. Вместе с тем при нулевых начальных условиях с точностью до обозначений записи действительно очень похожи. Это сходство лежит в природе дифференциальных уравнений. Поэтому некоторые правила операционного исчисления применимы к операторной форме записи уравнения динамики. Так оператор p можно рассматривать в качестве сомножителя без права перестановки, то есть py yp. Его можно выносить за скобки и т.п.Поэтому уравнение динамики можно записать также в виде:   Дифференциальный оператор W(p) называют передаточной функцией. Она определяет отношение выходной величины звена к входной в каждый момент времени: W(p) = y(t)/u(t), поэтому ее еще называют динамическим коэффициентом усиления. В установившемся режиме d/dt = 0, то есть p = 0, поэтому передаточная функция превращается в коэффициент передачи звена K = bm/an.Знаменатель передаточной функции D(p) = aopn + a1pn - 1 + a2pn - 2 + ... + an называют характеристическим полиномом. Его корни, то есть значения p, при которых знаменатель D(p) обращается в ноль, а W(p) стремится к бесконечности, называются полюсами передаточной функции.Числитель K(p) = bopm + b1pm - 1+ ... + bm называют операторным коэффициентом передачи. Его корни, при которых K(p) = 0 и W(p) = 0, называются нулями передаточной функции. Звено САУ с известной передаточной функцией называется динамическим звеном. Оно изображается прямоугольником, внутри которого записывается выражение передаточной функции. То есть это обычное функциональное звено, функция которого задана математической зависимостью выходной величины от входной в динамическом режиме. Для звена с двумя входами и одним выходом должны быть записаны две передаточные функции по каждому из входов. Передаточная функция является основной характеристикой звена в динамическом режиме, из которой можно получить все остальные характеристики. Она определяется только параметрами системы и не зависит от входных и выходных величин. Например, одним из динамических звеньев является интегратор. Его передаточная функция Wи(p) = 1/p. Схема САУ, составленная из динамических звеньев, называется структурной. 3.4. Элементарные динамические звенья Динамика большинства функциональных элементов САУ независимо от исполнения может быть описана одинаковыми по форме дифференциальными уравнениями не более второго порядка. Такие элементы называют элементарными динамическими звеньями. Передаточная функция элементарного звена в общем виде задается отношением двух полиномов не более чем второй степени:  Wэ(p) = .  Известно также, что любой полином произвольного порядка можно разложить на простые сомножители не более, чем второго порядка. Так по теореме Виета модно записать  D(p) = aopn + a1pn - 1 + a2pn - 2 + ... + an = ao(p - p1)(p - p2)...(p - pn),  где p1, p2, ..., pn - корни полинома D(p). Аналогично  K(p) = bopm + b1pm - 1+ ... + bm = bo(p - p1)(p - p2)...(p - pm),  где p1, p2, ..., p

Лекция 4.Структурные схемы САУ

4.1. Эквивалентные преобразования структурных схем

4.2. САР напряжения генератора постоянного тока

Лекция 5.Временные характеристики

5.1. Понятие временных характеристик

5.2. Переходные характеристики элементарных звеньев

Лекция 6. Частотные характеристики

6.2. Частотные характеристики типовых звеньев

Лекция 7.ЧХ разомкнутых САУ

7.1. Частотные характеристики разомкнутых одноконтурных САУ

7.2. Законы регулирования

Лекция 8. Алгебраические критерии устойчивости

8.1. Понятие устойчивости системы

8.2. Алгебраические критерии устойчивости

Лекция 9. Частотные критерии устойчивости

9.1. Принцип аргумента

9.2. Критерий устойчивости Михайлова

9.3. Критерий устойчивости Найквиста

Лекция 10.D-разбиение. Запас устойчивости

10.1. Понятие структурной устойчивости. АФЧХ астатических САУ

10.2. Понятие запаса устойчивости

10.3. Анализ устойчивости по ЛЧХ

Лекция 11. Качество САУ

11.1. Теоретическое обоснование метода D-разбиений

11.2. D-разбиение по одному параметру

11.3. Прямые методы оценки качества управления

Лекция 12. Корневой и интегральный методы оценки качества САУ 12.1. Корневой метод оценки качества управления  Это косвенный метод, основанный на определении границ области расположения корней характеристического уравнения на комплексной плоскости, что дает возможность приблизительно оценить качество управления.Пусть имеется дифференциальное уравнение замкнутой САУ:  (a0pn + a1pn-1 + a2pn-2 + ... + (an)y = (b0pm + b1pm-1 + ... + bm)u. Передаточная функция САУ ,  где p1,p2,...,p

Лекция 13. Частотные методы оценки качества

13.1. Теоретическое обоснование

13.2. Основные соотношения между ВЧХ и переходной характеристикой

13.3. Метод трапеций

Лекция 14. Синтез САУ

14.1. Синтез САУ

14.2. Коррекция свойств САУ изменением параметров звеньев

Лекция 15. Включение корректирующих звеньев

15.1. Коррекция свойств САУ включением последовательных корректирующих звеньев

15.1.1. Включение интегрирующего звена в статическую САУ

15.2. Последовательная коррекция по задающему воздействию

15.3. Коррекция с использованием неединичной обратной связи

15.4. Компенсация возмущающего воздействия



Подставляя это определение в выражение для определения h(t) можно вычислить кривую переходного процесса, соответствующую единичной трапециидальной ВЧХ. Эти расчеты были проделаны и составлены таблицы hk -функций.

Для любой трапециидальной ВЧХ, на которые разбита реальная ВЧХ (рис.99б), можно построить подобную ей единичную трапецию со значением k = 1 2, где 1 - частота, соответствующая перелому реальной трапеции, 2 - основание трапеции реальной ВЧХ. Для данной единичной трапеции по таблице hk-функций строят кривую hk(k,t), где t - время. Затем, используя свойства 2 и 3 масштабирования ВЧХ и переходной характеристики строят кривую переходного процесса, соответствующего данной трапециидальной ВЧХ. Причем оба описанных процесса можно совместить: сначала задаются моментом времени t, для него по таблице находят значение hk(k,t), потом умножают это значение на P(0) (масштабирование по вертикальной оси) и откладывают полученное значение на графике h(t) для времени t = t/ 2 (масштабирование по горизонтальной оси). Строя таким образом точки для различных моментов времени получают кривую

 

hi(t/ 2) = P(0) hk(k,t).

 

Данный алгоритм удобно оформить в таблицу:

 

t

hk(k,t)

t = t/ 2

hi(t) = P(0) hk(k,t)

.....

.....

.....

.....

 

После суммирования составляющих переходного процесса, соответствующих каждой трапеции, получают реальную характеристику h(t).

Описанный метод построения переходной характеристики называется методом трапеций.


Лекция 14. Синтез САУ

14.1. Синтез САУ


 

В ТАУ можно выделить две характерные задачи: 1) в заданной САУ найти и оценить переходные процессы - это задача анализа САУ; 2) по заданным переходным процессам и основным показателям разработать САУ - это задача синтеза САУ.

Вторая задача сложнее в виду своей неоднозначности, многое определяется творческими способностями проектировщика. Поэтому обычно задачу синтеза САУ ставится ограниченно. Считается, что основная часть системы уже задана, что обычно имеет место. Требуется синтезировать корректирующие звенья, то есть выбрать их схему и параметры. При этом необходимо, чтобы в результате коррекции САУ обеспечивался требуемый запас устойчивости; точность управления в установившихся режимах и качество управления в динамических режимах.

 

14.1.1. Включение корректирующих устройств


 



Корректирующее устройство можно включить последовательно, параллельно-согласно или параллельно-встречно (по схеме с обратной связью).

Последовательное корректирующее устройство с передаточной функцией Wп включается обычно после предварительного усилителя. На рис.103а предварительный усилитель имеет передаточную функцию W3, выходной каскад усилителя - W2, исполнительный элемент - W1.

Параллельно-согласное корректирующее устройство с передаточной функцией Wпс (рис.103б) может иногда при меньшей сложности обеспечить нужное преобразование сигнала. Например, для коррекции свойств САУ часто требуются дифференцирующие и форсирующие звенья, которые конструктивно очень сложны. В то же время параллельно-согласное включение предварительного усилителя (W3 = K3) и простого апериодического звена с передаточной функцией Wпс = позволяет  реализовать функцию реального форсирующего звена. Такое соединение можно заменить эквивалентным форсирующим звеном с передаточной функцией

 

Wф

= W3 + Wпс = ,

 

где Tф1 = ; Tф2 = Tпс; Kф = K3 + Kпс.

Наибольшими возможностями в плане коррекции свойств САУ обладает корректирующее устройство с передаточной функцией Wпв, включенное по схеме с отрицательной или положительной обратной связью, охватывающей один из звеньев САУ, как правило исполнительный элемент или выходной каскад усилителя (усилитель мощности)(рис.103в). Такие обратные связи называются местными. При этом передаточная функция эквивалентного звена:

 

Wэкв = .

 

Обычно передаточную функцию выходного каскада усилителя W2 выбирают из условия |W2.Wпв| >> 1 в широком диапазоне частот, поэтому

Wэкв 1/Wпв.

То есть свойства участка цепи с параллельно-встречным включением корректирующего устройства определяются только свойствами данного корректирующего устройства. Это основное достоинство данного способа включения. Влияние плохих свойств какого либо необходимого для САУ звена, например, его нелинейности, могут быть практически полностью устранены.

Местные корректирующие обратные связи делятся на жесткие и гибкие. Жесткая обратная связь действует на систему как в переходном, так и в установившемся режиме, то есть Wж(0) 0. Она реализуется безынерционным или инерционным звеном:

 

Wж = Kж или Wж = .

 

Гибкая обратная связь действует только в переходном режиме, она реализуется либо дифференцирующим, либо реальным дифференцирующим звеном:

 

Wг = Kг pили Wг = .

 

Например, если интегрирующее звено Wи = Kи/p охвачено жесткой обратной связью звеном Wж = Kж, то

 

Wэкв
= ,

 

где Kэкв = 1/Kж, Tэкв = 1/(Kи KэквKж). То есть жесткая обратная связь превращает интегрирующее звено в апериодическое. В случае гибкой обратной связи звеном Wг = Kгp получаем

 

Wэкв = ,

 

где Kэкв = . То есть гибкая обратная связь не изменяет структуру интегрирующего звена, но уменьшает его коэффициент передачи.

Таким образом, даже простейшие обратные связи способны существенно изменить свойства типовых динамических звеньев. Еще больший эффект дают сложные отрицательные и положительные обратные связи. Если основные элементы регулятора по своей природе позволяют создать обратную связь, то динамические свойства этих элементов часто могут быть изменены в нужном направлении.

 

14.1.2. Синтез корректирующих устройств.


 

Корректирующие устройства синтезируют на основании требований к свойствам САУ. Для этого необходимо знать передаточную функцию реальной САУ Wреал, которая чем то не удовлетворяет разработчика, и желаемую передаточную функцию Wжел , которой должна обладать САУ в результате корректировки ее свойств.

При синтезе корректирующих устройств сначала определяю передаточную функцию возможного последовательного корректирующего устройства исходя из соотношения: Wп = Wжел /Wреал. Затем выясняют, при каких передаточных функциях параллельно-согласного Wпс и параллельно-встречного Wпв корректирующих устройств будет получен тот же эффект. После этого решают, какое из них более целесообразно и проще создать. При этом исходя из рис.103 можно записать:

Wжел = W Wп = W1 W2.(W3 + Wпс) = W (1 + Wпс/W3) = W/(1 + W2 Wпв),

где W = W1 W2 W3. Из этого соотношения можно определить формулы перехода от одного корректирующего устройства к другому.

 

14.2. Коррекция свойств САУ изменением параметров звеньев


 



Рассмотрим примеры коррекции свойств некоторой исходной замкнутой САУ (рис.104), передаточная функция которой в разомкнутом состоянии:

 

W(p) = .

 

Для этого воспользуемся критерием Найквиста. Значения параметров звеньев в каждом конкретном случае будем оговаривать отдельно.


14.2.1. Изменение коэффициента передачи

 

Для увеличения точности статической САУ надо увеличивать коэффициент передачи K. С ростом K увеличивается жесткость статической характеристики САУ (рис.105), то есть уменьшается статическая ошибка e.

На рис.106 сплошными линиями показаны частотные характеристики исходной разомкнутой САУ при T1 = 0.5c, T2 = 0.02c, T3 = 0.002c, K = 10.



При увеличении коэффициента передачи K в N раз ЛАЧХ, не меняя своей формы, поднимается вверх на 20lgN (на рисунке изображена пунктирной линией). При этом ЛФЧХ остается без изменения. Из рисунка видно, что с увеличением коэффициента передачи запас устойчивости по модулю уменьшается с h 30дб/дек до hк 15дб/дек, по фазе - с 60o до к 15o .

То есть, при повышении точности САУ путем увеличения коэффициента передачи необходимы мероприятия по повышению запаса устойчивости. Это главный недостаток такой коррекции.



К достоинствам можно отнести повышение быстродействия САУ, так как частота среза wср увеличивается, следовательно постоянная времени САУ - уменьшается.

14.2.2. Изменение постоянной времени звена САУ


На рис.107 сплошными линиями изображены ЛЧХ разомкнутой САУ с параметрами: T1 = 0.05c, T2 = 0.01c,