Файл: Учебнометодическое пособие для студентов дефектологического факультета университета. Курск, кгу. 2011. 45 с. Печатается по рекомендации учебнометодического совета дефектологического факультета Курского государственного университета.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 04.05.2024
Просмотров: 87
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
слуховых ощущений. К физическим параметрам звука относится частота звука, чему соответствует физиологическое качество, которое определяет высоту звука.
Человеческое ухо способно воспринимать звуки широкого диапазона от 16—20 Гц до 16.000—20.000 Гц (по данным разных авторов). Этот разброс характеризует большие различия в слуховой чувствительности у людей (в зависимости от возраста и др.).
Известно, что существует зона максимальной чувствительности к определенным частотам, которая охватывает от 1000 до 3000 Гц. Это именно тот диапазон, в котором в основном происходит речевое общение людей.
Вторым физическим параметром является интенсивность звука. которая соответствует физиологическому параметру — громкости звуков Третий параметр—длительность. Он одинаково обозначается и в физических и в физиологических единицах. Важным параметром звуковых раздражений является также звуковой спектр. Обычно звуки не являются одиночными, т. е. состоящими из одного-единственного компонента, как правило, это набор различных компонентов — тонов или обертонов (т. е. тонов, которые находятся в кратном отношении к основному тону). Весь звуковой спектр стимула определяет такой физиологический параметр, как тембр звука.
Звуковой анализатор способен не только анализировать звуки по частоте, интенсивности, длительности и тембру, т.е. выполнять непосредственно функцию анализа различных физических качеств звукового стимула, но он еще участвует и в ориентировке в пространстве. Мы знаем, что ориентировка в пространстве чрезвычайно сложная функция, в которой принимают участие различные анализаторные системы. Важнейшей системой, обеспечивающей пространственную ориентировку, является зрительная. Однако все другие анализаторы также вносят свой вклад в эту функцию
Вклад звукового анализатора в эту функцию очень существен, что особенно четко проявляется у слепых людей, которые хорошо ориентируются в пространстве преимущественно с помощью звуковых раздражений. С помощью слуховой системы определяется направление звука; это означает, что звуковое пространство характеризуется такими же пространственными координатами, как и зрительное: верх-низ, левая-правая сторона; по звуку человек способен определить и угол отклонения звука от средней линии, и, конечно, степень удаленности источника звука от слушателя. Эти две характеристики — направление и степень удаленности звука — дают человеку сведения о пространственных характеристиках источника звука.
Слуховая система в отличие от других анализаторных систем имеет еще одну очень существенную характеристику, а именно: на базе слуховой системы формируется человеческая речь. Поэтому внутри слуховой системы выделяют две самостоятельные подсистемы, которые обозначают как неречевой слух, или способность ориентироваться в неречевых звуках (т. е. в музыкальных тонах и шумах), и речевой слух, или способность слышать и анализировать звуки речи (родного или другого языка).
Остановимся подробнее на неречевом слухе. Слуховая система характеризуется большим количеством звеньев. Слуховой путь насчитывает не менее 6 нейронов, т. е. значительно большее количество переключений, чем другие анализаторные системы. Важно отметить также, что слуховая афферентация от одного рецептора (в отличие от зрительной и кожно-кинестетической) поступает не только в противоположное, но и в ипсилатеральное полушарие. Далее почти на всех уровнях слуховой системы (начиная с продолговатого мозга) происходит частичный перекрест слуховых путей, что обеспечивает интегративный характер слуховой афферентации. Наконец, слуховая афферентация — как и афферентация другой модальности — участвует в различных безусловных рефлексах (рефлексах равновесия и др.).
Периферическую часть слуховой системы составляет кортиев орган, находящийся в улитке, откуда берет начало VIII пара нервов. Кортиев орган представляет собой лабиринт, расположенный внутри улитки, который содержит наружные и внутренние слуховые клетки, свободно плавающие в эндолимфе; при звуковых колебаниях они приходят в движение, что и приводит к возникновению нервного импульса. В зависимости от того, какова частота колебания, возбуждаются слуховые клетки, расположенные в разных местах кортиевого органа, что и создает ощущение различной высоты звука.
Это раздельное представительство звуков в кортиевом органе имеется не только на периферическом уровне, но и на всех других уровнях слуховой системы, включая и кору больших полушарий. Первичное 41-е поле височной коры принципиально организовано так же, как и зрительное 17-е поле, или тактильное 3-е поле: в разных участках 41-го поля представлены различные участки звуковой тон-шкалы.
VIII пара нервов - очень короткий участок слуховой системы, который имеет в своем составе и вестибулярные и слуховые волокна.
Следующий уровень слуховой системы — продолговатый мозг (дорсальные и вентральные кохлеарные ядра, где находится второй нейрон слухового пути). В продолговатом мозге происходит первый перекрест путей слуховой системы (переход большинства волокон, несущих слуховую афферентацию, из кохлеарных ядер в ядра верхней оливы и трапециевидного тела своего и противоположного полушария, откуда в составе боковой петли слуховая афферентация попадает в средний мозг, где находятся следующие переключательные ядра слухового пути). Уровень продолговатого мозга, где находится несколько ядер, связанных со слуховой рецепцией, весьма существен для организации разнообразных безусловных рефлексов, в которых принимают участие звуковые ощущения, а именно: рефлекторных движений
глаз в ответ на звук, старт-рефлексов в ответ на опасный звук и ряда других безусловных моторных актов, связанных со звуком.
Следующее звено слуховой системы — мозжечок, представляющий собой своего рода «коллектор», собирающий самую различную афферентацию, прежде всего проприоцептивную. Однако в мозжечок поступает и зрительная и слуховая афферентация. Последняя также имеет большое значение для выполнения основной функции мозжечка — регуляции равновесия. Таким образом, слуховая система наряду с вестибулярной участвует и в такой важной функции, как поддержание равновесия.
Важным звеном слуховой системы является средний мозг (нижние бугры четверохолмия). Известно, что нижние и верхние бугры четверохолмия тесно взаимодействуют. Здесь на уровне среднего мозга происходит переработка слуховой информации, интеграция слуховой и зрительной афферентации. В области среднего мозга происходит частичный перекрест слуховых путей и часть слуховой информации поступает в противоположное полушарие. Именно этот уровень слуховой системы прежде всего участвует в биноуральном слухе, т.е. в способности с помощью слуха одновременно оценивать и удаленность, и пространственное расположение источника звука, что делается с помощью сопоставления ощущений, поступающих от левого и правого уха.
Медиальное, или внутреннее, коленчатое тело (МКТ), как известно, входит в состав таламической системы, представляющей собой важнейший коллектор различного рода афферентации, в том числе и слуховой. В разных участках МКТ различным образом представлены разные участки тон-шкалы.
Следующий уровень — слуховое сияние, или пути, которые идут из МКТ к 41-му первичному полю коры височной области мозга. Последняя инстанция слухового пути — 41-е поле коры височной области мозга. 41-е поле организовано по топическому принципу, как и 17-е поле зрительной коры и 3-е поле теменной коры, а именно: в различных участках 41-го поля представлены разные по высоте звуки. Оно расположено в извилине Гешля, в глубине коры и не выходит на поверхность. Корковый уровень слуховой системы связан прежде всего с анализом коротких звуков (меньше 4-х мс), и поражение этого уровня проявляется в виде невозможности восприятия и различения коротких звуков, причем этот симптом характерен для поражения как левой, так и правой височной области
.
Выше описаны относительно элементарные сенсорные слуховые функции.
Гностические слуховые функции связаны с ядерной зоной звукового анализатора (куда кроме 41-го поля входят 42-е и 22-е поля).
8. РЕГУЛЯЦИЯ ПРОИЗВОЛЬНЫХ ДВИЖЕНИЙ И ДЕЙСТВИЙ
Произвольные движения и действия (как совокупность произвольных движений, объединенных единой целью) относятся к числу наиболее сложных психических функций человека. Они представляют собой сложную функциональную систему (или системы) иерархически организованную, включающую много уровней и подуровней, характеризующуюся сложным и многозвенным афферентным и эфферентным составом, условно-рефлекторную по своему происхождению, формирующуюся полностью прижизненно, как и другие высшие психические функции. Произвольные движения участвуют в осуществлении многих других высших психический функций: устной и письменной речи, письменного счета, рисования, лепки и др. Произвольные движения включены в разнообразные моторные акты человека, составляя лишь определенную часть (уровень) внутри огромного их многообразия. К произвольным движениям относятся движения поперечно-полосатой мускулатуры рук, лица, ног, всего туловища, т.е. обширнейший класса движений.
Современная физиология накопила разнообразные сведения относительно большой сложности как афферентного, так и эфферентного механизмов произвольных движений. О большой сложности и многообразии афферентных аппаратов произвольных движений писали И. М. Сеченов, И. П. Павлов и многие другие отечественные физиологи, показавшие, что произвольные движения — это сложно афферентированные движения, включающие в свой афферентный аппарат самые различные виды афферентации, среди которых базальной является кинестетическая афферентация. На принципиальную роль афферентации в регуляции произвольных движений и действий указывали Н. А. Бернштейн и П. К. Анохин, внесшие огромный вклад в развитие материалистического понимания генеза произвольного акта и тем самым — в теорию произвольных актов вообще. Н. А. Бернштейн показал принципиальную невозможность реализации произвольного двигательного акта с помощью одних только эфферентных импульсов. Концепция Н. А. Бернштейна о построении движений имела огромное значение для создания теории произвольного двигательною акта. Согласно данной концепции любое движение — сложная многоуровневая система, где каждый уровень или определенные анатомические структуры характеризуются «ведущей афферентацией» и собственным набором регулируемых движений. Выделенные Н. А. Бернштейном пять уровней регуляции движений (руброспинальный, таламопаллидарный, пирамидно-стриальный, теменно-премоторный и корковый «символический») объединяют непроизвольные и произвольные движения в единую систему. Если первый и второй уровни ответственны за регуляцию непроизвольных движений (движения гладкой мускулатуры, тремор, тонус, синергии, автоматизмы и др.), то третий—пятый уровни связаны с регуляцией произвольных двигательных актов, в которых участвуют как движения всего туловища (ходьба, бег, прыжки и др.), так и движения отдельных частей тела: рук (действия с предметами, письмо, рисование, различные мануальные навыки), лица (мимика), речевого аппарата (устная речь) и т.д.
Таким образом, произвольные движения — это целый набор различных двигательных актов, регулируемых различными уровнями (структурами) нервной системы и управляемые разного рода афферентными импульсами (и различной «ведущей афферентацией»). Патология любого из перечисленных уровней ведет к нарушениям движений данного уровня, а также тех двигательных актов, куда данные движения включаются как «фоновые». Тип афферентации, как и анатомические структуры, является критерием для выделения класса движений как внутри непроизвольных, так и внутри произвольных. Иными словами, афферентация является важнейшим фактором, определяющим движения.
На принципиальную важность афферентации в регуляции всех поведенческих актов животных (куда входят «так называемые произвольные движения», по терминологии И. П. Павлова) указывал П. К. Анохин, разработавший концепцию функциональных систем. Конечный двигательный акт предопределяется и афферентным синтезом («предпусковой афферентацией»), и афферентацией, поступающей от двигающегося органа и подкрепления («обратной афферентацией»), без которых полезный результат не может быть достигнут.
А.Р. Лурия, анализируя наблюдения над больными с локальными поражениями головного мозга, уточнил конкретный состав тех корковых зон, которые участвуют в мозговой организации произвольных двигательных актов, включив в понятие «двигательный организатор» не только моторные, но и сенсорные и ассоциативные корковые поля. В статье «Двигательный анализатор» А. Р. Лурия писал о том, что помимо собственно двигательных, моторных зон коры больших полушарий, в корковое звено двигательного анализатора следует включать и многие другие зоны коры, а именно: постцентральную теменную кору, обеспечивающую анализ кожно-кинестетической афферентации, поступающей от органов движения, задние затылочные и теменно-затылочные отделы коры больших полушарий, которые обеспечивают движение с помощью зрительной афферентации, а также обеспечивают пространственную организацию движений, височную кору (прежде всего левого полушария), обеспечивающую не только слухоречевую афферентацию речевой моторики, но и участвующую во всех оречевленных (внешней и внутренней речью) двигательных актах. Наконец, в корковое звено двигательного анализатора следует включать и передние отделы коры больших полушарий (премоторную и префронтальную кору), с помощью которых осуществляс
Человеческое ухо способно воспринимать звуки широкого диапазона от 16—20 Гц до 16.000—20.000 Гц (по данным разных авторов). Этот разброс характеризует большие различия в слуховой чувствительности у людей (в зависимости от возраста и др.).
Известно, что существует зона максимальной чувствительности к определенным частотам, которая охватывает от 1000 до 3000 Гц. Это именно тот диапазон, в котором в основном происходит речевое общение людей.
Вторым физическим параметром является интенсивность звука. которая соответствует физиологическому параметру — громкости звуков Третий параметр—длительность. Он одинаково обозначается и в физических и в физиологических единицах. Важным параметром звуковых раздражений является также звуковой спектр. Обычно звуки не являются одиночными, т. е. состоящими из одного-единственного компонента, как правило, это набор различных компонентов — тонов или обертонов (т. е. тонов, которые находятся в кратном отношении к основному тону). Весь звуковой спектр стимула определяет такой физиологический параметр, как тембр звука.
Звуковой анализатор способен не только анализировать звуки по частоте, интенсивности, длительности и тембру, т.е. выполнять непосредственно функцию анализа различных физических качеств звукового стимула, но он еще участвует и в ориентировке в пространстве. Мы знаем, что ориентировка в пространстве чрезвычайно сложная функция, в которой принимают участие различные анализаторные системы. Важнейшей системой, обеспечивающей пространственную ориентировку, является зрительная. Однако все другие анализаторы также вносят свой вклад в эту функцию
Вклад звукового анализатора в эту функцию очень существен, что особенно четко проявляется у слепых людей, которые хорошо ориентируются в пространстве преимущественно с помощью звуковых раздражений. С помощью слуховой системы определяется направление звука; это означает, что звуковое пространство характеризуется такими же пространственными координатами, как и зрительное: верх-низ, левая-правая сторона; по звуку человек способен определить и угол отклонения звука от средней линии, и, конечно, степень удаленности источника звука от слушателя. Эти две характеристики — направление и степень удаленности звука — дают человеку сведения о пространственных характеристиках источника звука.
Слуховая система в отличие от других анализаторных систем имеет еще одну очень существенную характеристику, а именно: на базе слуховой системы формируется человеческая речь. Поэтому внутри слуховой системы выделяют две самостоятельные подсистемы, которые обозначают как неречевой слух, или способность ориентироваться в неречевых звуках (т. е. в музыкальных тонах и шумах), и речевой слух, или способность слышать и анализировать звуки речи (родного или другого языка).
Остановимся подробнее на неречевом слухе. Слуховая система характеризуется большим количеством звеньев. Слуховой путь насчитывает не менее 6 нейронов, т. е. значительно большее количество переключений, чем другие анализаторные системы. Важно отметить также, что слуховая афферентация от одного рецептора (в отличие от зрительной и кожно-кинестетической) поступает не только в противоположное, но и в ипсилатеральное полушарие. Далее почти на всех уровнях слуховой системы (начиная с продолговатого мозга) происходит частичный перекрест слуховых путей, что обеспечивает интегративный характер слуховой афферентации. Наконец, слуховая афферентация — как и афферентация другой модальности — участвует в различных безусловных рефлексах (рефлексах равновесия и др.).
Периферическую часть слуховой системы составляет кортиев орган, находящийся в улитке, откуда берет начало VIII пара нервов. Кортиев орган представляет собой лабиринт, расположенный внутри улитки, который содержит наружные и внутренние слуховые клетки, свободно плавающие в эндолимфе; при звуковых колебаниях они приходят в движение, что и приводит к возникновению нервного импульса. В зависимости от того, какова частота колебания, возбуждаются слуховые клетки, расположенные в разных местах кортиевого органа, что и создает ощущение различной высоты звука.
Это раздельное представительство звуков в кортиевом органе имеется не только на периферическом уровне, но и на всех других уровнях слуховой системы, включая и кору больших полушарий. Первичное 41-е поле височной коры принципиально организовано так же, как и зрительное 17-е поле, или тактильное 3-е поле: в разных участках 41-го поля представлены различные участки звуковой тон-шкалы.
VIII пара нервов - очень короткий участок слуховой системы, который имеет в своем составе и вестибулярные и слуховые волокна.
Следующий уровень слуховой системы — продолговатый мозг (дорсальные и вентральные кохлеарные ядра, где находится второй нейрон слухового пути). В продолговатом мозге происходит первый перекрест путей слуховой системы (переход большинства волокон, несущих слуховую афферентацию, из кохлеарных ядер в ядра верхней оливы и трапециевидного тела своего и противоположного полушария, откуда в составе боковой петли слуховая афферентация попадает в средний мозг, где находятся следующие переключательные ядра слухового пути). Уровень продолговатого мозга, где находится несколько ядер, связанных со слуховой рецепцией, весьма существен для организации разнообразных безусловных рефлексов, в которых принимают участие звуковые ощущения, а именно: рефлекторных движений
глаз в ответ на звук, старт-рефлексов в ответ на опасный звук и ряда других безусловных моторных актов, связанных со звуком.
Следующее звено слуховой системы — мозжечок, представляющий собой своего рода «коллектор», собирающий самую различную афферентацию, прежде всего проприоцептивную. Однако в мозжечок поступает и зрительная и слуховая афферентация. Последняя также имеет большое значение для выполнения основной функции мозжечка — регуляции равновесия. Таким образом, слуховая система наряду с вестибулярной участвует и в такой важной функции, как поддержание равновесия.
Важным звеном слуховой системы является средний мозг (нижние бугры четверохолмия). Известно, что нижние и верхние бугры четверохолмия тесно взаимодействуют. Здесь на уровне среднего мозга происходит переработка слуховой информации, интеграция слуховой и зрительной афферентации. В области среднего мозга происходит частичный перекрест слуховых путей и часть слуховой информации поступает в противоположное полушарие. Именно этот уровень слуховой системы прежде всего участвует в биноуральном слухе, т.е. в способности с помощью слуха одновременно оценивать и удаленность, и пространственное расположение источника звука, что делается с помощью сопоставления ощущений, поступающих от левого и правого уха.
Медиальное, или внутреннее, коленчатое тело (МКТ), как известно, входит в состав таламической системы, представляющей собой важнейший коллектор различного рода афферентации, в том числе и слуховой. В разных участках МКТ различным образом представлены разные участки тон-шкалы.
Следующий уровень — слуховое сияние, или пути, которые идут из МКТ к 41-му первичному полю коры височной области мозга. Последняя инстанция слухового пути — 41-е поле коры височной области мозга. 41-е поле организовано по топическому принципу, как и 17-е поле зрительной коры и 3-е поле теменной коры, а именно: в различных участках 41-го поля представлены разные по высоте звуки. Оно расположено в извилине Гешля, в глубине коры и не выходит на поверхность. Корковый уровень слуховой системы связан прежде всего с анализом коротких звуков (меньше 4-х мс), и поражение этого уровня проявляется в виде невозможности восприятия и различения коротких звуков, причем этот симптом характерен для поражения как левой, так и правой височной области
.
Выше описаны относительно элементарные сенсорные слуховые функции.
Гностические слуховые функции связаны с ядерной зоной звукового анализатора (куда кроме 41-го поля входят 42-е и 22-е поля).
8. РЕГУЛЯЦИЯ ПРОИЗВОЛЬНЫХ ДВИЖЕНИЙ И ДЕЙСТВИЙ
Произвольные движения и действия (как совокупность произвольных движений, объединенных единой целью) относятся к числу наиболее сложных психических функций человека. Они представляют собой сложную функциональную систему (или системы) иерархически организованную, включающую много уровней и подуровней, характеризующуюся сложным и многозвенным афферентным и эфферентным составом, условно-рефлекторную по своему происхождению, формирующуюся полностью прижизненно, как и другие высшие психические функции. Произвольные движения участвуют в осуществлении многих других высших психический функций: устной и письменной речи, письменного счета, рисования, лепки и др. Произвольные движения включены в разнообразные моторные акты человека, составляя лишь определенную часть (уровень) внутри огромного их многообразия. К произвольным движениям относятся движения поперечно-полосатой мускулатуры рук, лица, ног, всего туловища, т.е. обширнейший класса движений.
Современная физиология накопила разнообразные сведения относительно большой сложности как афферентного, так и эфферентного механизмов произвольных движений. О большой сложности и многообразии афферентных аппаратов произвольных движений писали И. М. Сеченов, И. П. Павлов и многие другие отечественные физиологи, показавшие, что произвольные движения — это сложно афферентированные движения, включающие в свой афферентный аппарат самые различные виды афферентации, среди которых базальной является кинестетическая афферентация. На принципиальную роль афферентации в регуляции произвольных движений и действий указывали Н. А. Бернштейн и П. К. Анохин, внесшие огромный вклад в развитие материалистического понимания генеза произвольного акта и тем самым — в теорию произвольных актов вообще. Н. А. Бернштейн показал принципиальную невозможность реализации произвольного двигательного акта с помощью одних только эфферентных импульсов. Концепция Н. А. Бернштейна о построении движений имела огромное значение для создания теории произвольного двигательною акта. Согласно данной концепции любое движение — сложная многоуровневая система, где каждый уровень или определенные анатомические структуры характеризуются «ведущей афферентацией» и собственным набором регулируемых движений. Выделенные Н. А. Бернштейном пять уровней регуляции движений (руброспинальный, таламопаллидарный, пирамидно-стриальный, теменно-премоторный и корковый «символический») объединяют непроизвольные и произвольные движения в единую систему. Если первый и второй уровни ответственны за регуляцию непроизвольных движений (движения гладкой мускулатуры, тремор, тонус, синергии, автоматизмы и др.), то третий—пятый уровни связаны с регуляцией произвольных двигательных актов, в которых участвуют как движения всего туловища (ходьба, бег, прыжки и др.), так и движения отдельных частей тела: рук (действия с предметами, письмо, рисование, различные мануальные навыки), лица (мимика), речевого аппарата (устная речь) и т.д.
Таким образом, произвольные движения — это целый набор различных двигательных актов, регулируемых различными уровнями (структурами) нервной системы и управляемые разного рода афферентными импульсами (и различной «ведущей афферентацией»). Патология любого из перечисленных уровней ведет к нарушениям движений данного уровня, а также тех двигательных актов, куда данные движения включаются как «фоновые». Тип афферентации, как и анатомические структуры, является критерием для выделения класса движений как внутри непроизвольных, так и внутри произвольных. Иными словами, афферентация является важнейшим фактором, определяющим движения.
На принципиальную важность афферентации в регуляции всех поведенческих актов животных (куда входят «так называемые произвольные движения», по терминологии И. П. Павлова) указывал П. К. Анохин, разработавший концепцию функциональных систем. Конечный двигательный акт предопределяется и афферентным синтезом («предпусковой афферентацией»), и афферентацией, поступающей от двигающегося органа и подкрепления («обратной афферентацией»), без которых полезный результат не может быть достигнут.
А.Р. Лурия, анализируя наблюдения над больными с локальными поражениями головного мозга, уточнил конкретный состав тех корковых зон, которые участвуют в мозговой организации произвольных двигательных актов, включив в понятие «двигательный организатор» не только моторные, но и сенсорные и ассоциативные корковые поля. В статье «Двигательный анализатор» А. Р. Лурия писал о том, что помимо собственно двигательных, моторных зон коры больших полушарий, в корковое звено двигательного анализатора следует включать и многие другие зоны коры, а именно: постцентральную теменную кору, обеспечивающую анализ кожно-кинестетической афферентации, поступающей от органов движения, задние затылочные и теменно-затылочные отделы коры больших полушарий, которые обеспечивают движение с помощью зрительной афферентации, а также обеспечивают пространственную организацию движений, височную кору (прежде всего левого полушария), обеспечивающую не только слухоречевую афферентацию речевой моторики, но и участвующую во всех оречевленных (внешней и внутренней речью) двигательных актах. Наконец, в корковое звено двигательного анализатора следует включать и передние отделы коры больших полушарий (премоторную и префронтальную кору), с помощью которых осуществляс