ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 15.10.2024
Просмотров: 141
Скачиваний: 0
При этом под rw подразумевается суммарное сопротивление бу горков шероховатости, отнесенное к единице поверхности; ик — некоторая условная средняя скорость на уровне границы бугорков шероховатости; величина kuk/v играет роль некоторого условного числа Рейнольдса при обтекании бугорков.
Соотношение (IV. 160) может быть преобразовано к виду
(IV.161)
или
(IV. 162)
Вид функции Ф заранее неизвестен и определяется эксперимен тально. Очевидно, для внешней области вплоть до границы бугор ков шероховатости справедливы все допущения о турбулентном течении в трубе. В частности, профиль скорости [см. (IV.50) ]
2,3 |
, |
. ^ |
« = -£-»*lg У + С
может быть конкретизирован с учетом граничного условия: и = ик при у = к. Тогда распределение скоростей при турбулентном течении в трубе примет вид
~ = 5.75 lg А + f = 5,75 lg ■А + Ф ( ^ ) . (IV. 163)
Применяя (IV. 163) к оси трубы и используя (IV. 132), (IV. 134), можно получить формулу сопротивления
3,75 + |
- 5,75 1ё - ^ = ф ( ^ ) . |
(IV. 164) |
Таким образом, функция Ф может быть определена не только экспериментально, но и расчетным путем или по формуле (IV. 163) из анализа профилей скорости, или по формуле (IV. 164) из ана лиза данных по сопротивлению шероховатых труб.
Экспериментальные данные Никурадзе позволили произвести такой двойной анализ и установить вид функции Ф для двух пре дельных режимов (I и III) из трех наблюдавшихся (рис. 48).
Для режима / — режима гладкой трубы
Ф ( ^ ) = 5,75 l g ( ^ - ) + 5,5. |
(IV. 165) |
Этот режим имеет место при
\g ( ^ ) < 0,47, или ^ < з. |
(IV. 166) |
151
Из этих соотношений находится предельная высота бугорков шероховатости, при которой шероховатую трубу можно рассма тривать как гладкую:
к . ____________ 16,3____________
~а ^ R (0,0032 + 0.221R- 0'237)0'5
(IV. 167)
Для режима III — режима развитой шероховатости
= const = 8,48. |
(IV. 168) |
Рис. 48. Функция Ф по опытным данным Никурадзе:
/ — режим гладкой трубы; I I |
— переходный режим; I I I — режим раз |
витой |
шероховатости |
Область существования этого режима определяется условиями:
|
1 в ( ~ ) > ',8; |
—~ > 60; |
|
(IV. 169) |
||
|
|
К /6 Л < |
6 , |
|
(IV. 170) |
|
ИЛИ |
^ |
|
|
|
|
|
к |
390 |
|
(IV.171) |
|||
« |
> |
R (0,0032 + 0,221 R- 0 '237)0'5 |
‘ |
|||
|
Очевидно, для этого предельного режима профиль скорости опре деляется выражением
+ = 5,75 + + 8,48. |
(IV. 172) |
Формула сопротивления после элементарных преобразований (IV. 164) приобретает вид
(IV. 173)
152
Универсальный закон сопротивления, охватывающий все три области, был получен в работе [184 ] в виде
1 |
1,74 — |
18,7 \ |
(IV. 174) |
|
VI |
RKX/' |
|||
|
|
Зависимость от шероховатости коэффициента сопротивления плоской пластины имеет такой же характер, как для шерохова тых труб. Для области развитой шероховатости, когда сопротив ление не зависит от числа Рейнольдса и определяется только ше-
Рис. 49. Локальный коэффициент сопротивления трения для ше роховатой пластины
роховатостью, в работе Дробленкова предложен эмпирический степенной закон сопротивления
pi/2 |
0,0031 |
|
или после преобразований
Се— |
Хш г = 0,0139 ( i ) - 1'’ . |
4 |
0,5р{/; |
(IV. 175)
(IV. 176)
Более обобщенная закономерность получается при исполь зовании логарифмического профиля скорости в пограничном слое пластины. На рис. 49 приведена номограмма для расчета локаль ного коэффициента сопротивления шероховатой пластины. Два типа кривых нанесены на этих рисунках для удобства пользования.
В практике часто бывает очень важно знать, какова должна быть чистота обработки поверхности той или иной детали, для
того чтобы поверхность можно |
было считать технически глад |
кой и не учитывать увеличения |
сопротивления, обусловленного |
153
шероховатостью. Анализ опытных данных показал, что в диапа зоне R = 105-И 09 допустимая величина шероховатости
Кдоп< 1 0 0 - ^ , |
(VI. 177) |
или
Рис. 50. Допустимая шероховатость для |
пластин, |
|||
. |
крыльев |
и лопаток: |
|
|
/ — лопатки |
воздуходувок; |
I I — лопатки |
самолетов; |
|
I I I — корпуса |
кораблей; |
I V |
— лопатки паровых турбин; |
|
V — корпуса дирижаблей; |
VI |
— аэродинамические трубы |
Эта формула оказывается справедливой, как показали опыты, не только для пластин, но и для турбинных и компрессорных ло паток, для корпусов кораблей, крыльев самолетов и других хорошо обтекаемых тел. На рис. 50 приведена серия кривых, представляю щих собой результаты расчетов по формуле (IV. 178). В табл. 5
154
Т а б л и ц а 5
Профиль |
1, |
“ оо* |
P it, |
10«v |
R |
КДОП’ |
|
м |
м/с |
ата/°С |
мм |
||||
Крыло самолета |
4 |
166 |
1/15 |
15 |
5 - 107 |
0,01 |
|
Лопатка |
воздухо |
0,1 |
150 |
1/15 |
15 |
106 |
0,01 |
дувки |
|
|
|
|
|
|
|
Лопатки |
паровой |
0,01 |
200 |
100/300 |
0,4 |
5 - 10е |
0,0002 |
турбины |
|
0,01 |
200 |
100/500 |
0,8 |
2,5- 10е |
0,0005 |
|
|
0,1 |
400 |
5/200 |
8 |
5- 10е |
0,0020 |
приведены результаты расчетов по этой формуле для нескольких конкретных случаев [167].
Как видно, допустимая величина шероховатости для лопаток паровых турбин весьма мала и практически неосуществима. Если учесть еще неизбежность возникновения на поверхности лопаток отложений солей и коррозии, то практически следует всегда счи тать поверхность лопаток паровых турбин шероховатой.
Влияние шероховатости на теплообмен изучено только экс
периментально и только при Рг |
1. В опытах [223] с воздухом |
получено соотношение |
|
Nuui. тр |
/ 7щ. тр |
Nurji. тр |
(IV. 179) |
\ 7 ГЛ. тр/ |
Индекс ш. тр относится к шероховатым трубам; индекс гл. тр — к гладким.
По-видимому, при Рг < 1 (жидкие металлы) доминирующим в теплообмене будет молекулярный перенос тепла, и тогда, так же как при ламинарном течении, влияние шероховатости на тепло обмен будет незначительным. При Рг > 1, когда основное терми ческое сопротивление сосредоточено в подслое, влияние возмуще ний, вызываемых шероховатостью, должно быть значительным. Кроме таких качественных оценок в литературе не имеется ка ких-либо более конкретных количественных рекомендаций.
24. Теплообмен на вращающемся диске при турбулентном режиме течения
Задача о формировании пограничного слоя и о теплообмене на вращающемся диске имеет большое практическое значение, осо бенно для турбомашин. Представляют интерес две постановки за дачи; исследование сопротивления и теплообмена при вращении
156
диска в свободном пространстве (свободный диск) и при вращении диска в кожухе.
При вращении диска в неограниченном пространстве часть жидкости, находящаяся в непосредственной близости у диска, увлекается им и под действием центробежной силы отбрасывается к периферии. Таким образом, скорость в пограничном слое имеет не только окружную, но и радиальную составляющую. Оценка, основанная на рассмотрении равновесия между силами трения и центробежными, показывает, что в случае ламинарного течения толщина пограничного слоя б не зависит от радиуса г и пропор циональна (v/(o)0-5; для турбулентного пограничного слоя ве личина б увеличивается по мере удаления от оси вращения:
6 = 0,526г ( - ^ ) ° ' \ |
(IV. 180) |
Вгл. III были рассмотрены результаты исследований лами нарного пограничного слоя на диске.
Экспериментальные исследования показывают, что переход от ламинарного режима течения в пограничном слое к турбулент ному начинается при 1,8 10б, полностью турбулентное те чение устанавливается при RL «а* 2,8- 10е. С увеличением шерохо ватости критическое значение числа RL уменьшается.
Вработе Крейца [97 ] приведен полуэмпирический метод ре шения системы уравнений для турбулентного пограничного слоя на вращающемся в неограниченном пространстве диске, основы
вающийся на предположении о допустимости применения обыч ных упрощений пограничного слоя для рассматриваемой задачи и выполнения условий
Рг = 1; Е = /С; ■d~ - = |
— (<у2)-1; |
г (х) = х sin об; |
d (rw)2 |
v р ' ’ |
v ' |
w — ха>sin a
на поверхности диска. В результате решения получено соотно шение
Nu |
с. |
(IV. 181) |
p p 7 = - f - |
||
которое при степенном законе изменения температуры |
|
|
Tw — T0>= Bxn |
(IV. 182) |
|
приобретает вид |
|
|
Nu = 0,0212 (п + 2,6)°’2 R0-8. |
(IV. 183) |
Локальный коэффициент сопротивления трению для этого случая
„ _ |
sin2« (5 -f- 2п) |
„ |
(IV. 184) |
cf |
4Я |
см> |
156
где см — коэффициент момента, который для полностью турбу лентного течения может быть определен по полуэмпирической формуле
|
|
|
|
См— 0,15R2T°’2, |
|
|
||
дающей хорошее совпадение с экспериментом при RL |
(3+ 20)10*. |
|||||||
Средний |
коэффициент теплоотдачи |
|
|
|||||
|
|
|
|
Nu -- Pr Rl |
м |
|
|
|
|
|
|
|
2п sin 2 а, ' |
|
|||
В работе |
[45] для локального коэффициента теплоотдачи при |
|||||||
Рг Ф 1 |
получена |
формула |
|
|
|
|
||
|
Nu, |
|
|
0,5Pr Rc^ |
|
(IV. 185) |
||
|
1 + |
у ( У Щ [5Pr + |
5 In (5Pr + 1) — 14] |
|||||
|
|
|
|
|||||
Рабочие колеса турбомашины обычно вращаются в довольно |
||||||||
узких |
кожухах: |
26 ^ а (26 — ширина |
кожуха; |
а — радиус |
||||
диска). |
|
|
|
|
|
|
|
|
|
1 |
|
* |
|
з |
|
|
5 |
|
|
|
|
1 |
\ |
\ |
|
* \' ' |
|
|
|
|
J |
|
и |
|
\ 1 |
|
|
|
|
Л. |
|
1 ' |
||
|
|
|
|
|
р |
|
1 |
|
|
|
|
|
|
|
ч |
|
|
|
|
|
|
|
|
ч |
|
|
|
|
|
|
|
|
ч |
|
|
|
|
|
|
|
|
ч |
|
|
|
|
|
|
|
|
ч |
|
|
|
|
|
|
|
|
ч |
|
|
|
|
|
|
|
|
* |
|
|
|
|
|
|
|
|
ч |
|
|
|
|
|
|
|
|
ч |
|
|
|
|
|
|
|
|
ч |
|
|
|
|
|
|
|
|
ч |
|
|
|
|
|
|
|
|
ч |
|
ЕЕ |
|
|
|
|
|
*4;J |
ч |
|
|
|
|
|
|
|
к |
|
||
|
|
|
|
|
ч |
|
|
|
|
|
|
|
Е |
|
ч |
|
|
|
|
|
|
|
ч |
|
|
|
|
|
|
|
|
|
с— |
|
|
Рис. 51. |
Режимы течения, |
возникающие в зазоре |
между вращающимся и непО' |
|||||
|
|
|
|
движным дисками |
|
|
Если величина 6 не очень мала, то момент сил трения в этом слу чае не зависит от ширины зазора 6.
В случае вращения диска в кожухе характер течения суще ственно отличается от характера течения при вращении диска в свободном пространстве. На рис. 51 показаны типичные режимы течения (1—5), возникающие в сравнительно узком незамкнутом зазоре между вращающимся и неподвижным дисками. Режимы 1, 4 соответствуют большим расходам, 2, 5 — малым расходам, не достаточным для заполнения всего зазора. Режим 3 соответствует чисто рециркуляционному режиму течения. Тип течения в за зоре в этом случае зависит от числа Рейнольдса R„ = рсо (2a)2/v
157