Файл: Реферат по дисциплине Численные методы решения задач строительства на эвм.docx

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 16.10.2024

Просмотров: 27

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.





введя одно из изобретенных Гауссом улучшений в терминологии и записях в арифметике, которое произвело в ней коренную ломку, - именно понятие сравнения.

Преимущество такой записи состоит в том, что она напоминает нам способ написания алгебраических уравнений, дает понятию арифметической делимости компактное представление и наводит на мысль попытаться перенести на арифметику (которая гораздо труднее алгебры) некоторые из операций, приводящих к хорошим результатам в алгебре. Например, мы можем «складывать» уравнения и обнаруживаем, что сравнения тоже можно

«складывать», если они берутся по одному и тому же модулю; при этом получаются другие сравнения.

Закон взаимности квадратичных вычетов нелегко доказать.

В самом деле, это не удалось сделать Эйлеру и Лежандру. Гаусс дал свое первое доказательство в возрасте 19 лет. Поскольку закон взаимности имеет фундаментальное значение в высшей арифметике и во многих отделах алгебры, Гаусс обращался к нему вновь и вновь в течение многих лет, стремясь найти его главные корни, пока не дал шесть различных доказательств теоремы, одно из которых опирается на построение с помощью циркуля и линейки правильных многоугольников.

Когда Гаусс в октябре 1795 г. в возрасте 18 лет оставил училище, чтобы поступить в Гёттингенский университет, он все еще не решил, чему посвятить жизнь - математике или филологии. К этому времени он уже изобрел метод «наименьших квадратов», который теперь так необходим при геодезических съемках, при обработке наблюдений и действительно повсюду, где «наиболее вероятное» значение какой-нибудь измеряемой величины должно быть получено из большого числа измерений (наиболее вероятное значение получается путем сведения к минимуму суммы квадратов отклонений в пределах предполагаемой точности). Честь этого открытия Гаусс делит с Лежандром, который независимо от Гаусса опубликовал метод в 1806 г. Работа в этом направлении вызвала у Гаусса интерес к теории ошибок наблюдения. Закон Гаусса нормального распределения ошибок и соответствующая колоколообразная кривая теперь известны всем тем, кто имеет дело со статистикой.

День 30 марта 1796 г. стал поворотным пунктом в жизни Гаусса. В этот день, как раз за месяц до своего 19-летия, Гаусс окончательно сделал выбор в пользу математики. Изучение языков осталось на всю жизнь его любимым занятием на досуге.
















АСИЗ-304.2020

Листт
















8

Изм.

Лист

докум.

Подпись

Дата






Как уже было сказано в главе о Ферма, правильный семнадцатиугольник был тем жребием, который заставил Гаусса перейти свой Рубикон. В тот же день Гаусс начал вести свой научный дневник. Это один из ценнейших документов в истории математики. Первая запись в нем увековечивает его великое открытие.

Одноступенчатый магнитный ускоритель масс

Дневник вошел в научное обращение только в 1898 г., 43 года спустя после смерти Гаусса. Он состоит из девятнадцати небольших страниц и содержит

146 исключительно кратких записей об открытиях или результатах
















АСИЗ-304.2020

Листт
















9

Изм.

Лист

докум.

Подпись

Дата





вычислений, последняя из которых датирована 9 июля 1814 г. Факсимильное воспроизведение рукописи было опубликовано в 1917 г. в десятом томе (часть 1) Собрания сочинений Гаусса вместе с исчерпывающим анализом ее содержания, проведенного несколькими сведущими редакторами. Не все открытия Гаусса этого плодотворного периода с 1796 по 1814 г. отмечены в дневнике. Но многие из тех, которые бегло очерчены в нем, достаточны для того, чтобы установить приоритет Гаусса в различных областях математики, например в изучении эллиптических функций -- здесь некоторые его современники отказывались верить, что он предвосхитил их.

То, что оказалось похороненным на годы или десятилетия в дневнике, могло бы создать доброе имя полудюжине ученых, если бы было быстро опубликовано. Кое-что вообще не стало достоянием гласности при жизни Гаусса, и он никогда не претендовал в своих публикациях на то, что опередил других, которые сталкивались с ним. Однако записи свидетельствуют, что он опередил некоторых из тех, кто ставил под сомнение сообщения его друзей. Эти предвосхищения не были просто заурядными. Некоторые из них привели к более важным областям математики XIX в.

Некоторые заметки указывают на то, что дневник был сугубо личным делом их автора. Так, под 10 июля 1796 г. имеется запись:

ЕВРИКА! пит = ? + ? + ?.

Она воскрешает в памяти восклицание Архимеда «Эврика!» и содержит утверждение, что всякое положительное целое число является суммой трех треугольных чисел, т. е. чисел последовательности 0, 1, 3, 6, 10, 15, ..., в которой каждый член (после нуля) представим в виде -- п (п -- 1). Другим способом толкования того же является утверждение, что всякое число вида 8/г + 3 есть сумма трех нечетных квадратов: 3 = I2 + I2 + I2, 11 = I2 + I2 + З2, 19

= I2 + З2 + З2 и так далее. Доказать это сразу нелегко.

Смысл двух записей навсегда потерян для нас, остальные 144 большей частью достаточно ясны. Одна из них особенно важна -- это запись от 19 марта 1797 г., показывающая, что уже Гаусс открыл двоякую периодичность некоторых эллиптических функций. Ему тогда не было еще 20 лет. Кроме того, более поздняя запись показывает, что Гаусс постиг двоякую периодичность и в общем случае. Одно это открытие, если бы он опубликовал его, могло бы сделать его знаменитым.
















АСИЗ-304.2020

Листт
















10

Изм.

Лист

докум.

Подпись

Дата






Почему Гаусс придерживал свои великие открытия? Это объяснить легче, чем его гений, -- если воспринять его собственные простые заявления, о которых сейчас будет рассказано.

Говоря о себе, Гаусс заметил, что предпринимал свои научные исследования лишь по глубочайшему внутреннему побуждению, и для него было второстепенным вопросом, будут ли когда-нибудь они опубликованы для сведения других. Другое заявление, которое Гаусс сделал однажды своему другу, объясняет как дневник, так и медленность в публикациях. Он сказал, что, прежде чем ему исполнилось 20 лет, его ум обуревала такая несметная масса новых идей, что он едва мог охватить их и его времени хватало только для того, чтобы записать небольшую их часть. Дневник содержит лишь короткие формулировки конечных результатов, явившихся плодом проведенных исследований: некоторыми из них он занимался неделями. Размышляя, будучи юношей, над завершенными нерушимыми цепями синтетических доказательств, в которые Архимед и Ньютон заключили свое вдохновение, Гаусс решил следовать их великому примеру и оставить после себя лишь законченные произведения, настолько совершенные, что к ним ничего нельзя добавить и от них ничего нельзя убавить, не обезображивая целого. Работа сама по себе должна быть полной, простой и убедительной, без всякого следа затраченного на ее выполнение труда. Имея перед собой такой идеал, Гаусс предпочитал несколько раз шлифовать один шедевр, чем публиковать свободные наброски многих, что он легко мог бы сделать.

Плоды этого стремления к совершенству были действительно зрелыми, но не всегда удобоваримыми. Поскольку все следы того, каким путем достигалась цель, устранялись, последователям Гаусса было нелегко переоткрыть пройденный им путь. Соответственно, некоторые из его работ должны были ждать одаренных толкователей, прежде чем математики смогли в общем понять их, увидеть их значение для нерешенных проблем и пойти дальше вперед. Современники Гаусса просили его ослабить строгость холодного совершенства, чтобы математика могла быстрее продвигаться вперед, но Гаусс никогда не делал послаблений. Лишь спустя длительное время после его смерти стало известно, как много из математики XIX столетия предвидел и предвосхитил Гаусс ранее 1800 г. Если бы он разгласил все, что знал, вполне возможно, что математика теперь на 50 лет или более опережала бы нынешнее свое состояние. Абель и Якоби смогли бы начать с того, что забросил Гаусс, вместо того чтобы тратить многие свои самые утонченные усилия на переоткрытие того, что знал Гаусс еще до их рождения, а
















АСИЗ-304.2020

Листт
















11

Изм.

Лист

докум.

Подпись

Дата






создатели неевклидовой геометрии могли бы обратить свой гений на другие вещи.

О себе Гаусс говорил, что он «во всем математик». Это верно, если учесть, что «математик» его дней включал также того, кого теперь можно назвать занимающимся математической физикой. Действительно, его девиз: Ты, природа, моя богиня, И я служу твоим законам...


Три года в Гёттингенском университете (октябрь 1795 -- сентябрь 1798) были наиболее плодотворными в жизни Гаусса. Он погрузился в работу. Друзей у него было немного. Один из них -- Вольфганг (Фаркаш) Бойяи -- стал другом на всю жизнь. Течение этой дружбы и ее значение в истории неевклидовой геометрии потребовали бы слишком много места для рассказа о них здесь. Сыну Вольфганга, Иоганну (Яношу), пришлось пройти практически тот же путь, которому следовал Гаусс, чтобы создать неевклидову геометрию в полном неведении того, что старый друг отца предвосхитил его. С 1795 г. он замыслил большое сочинение по теории чисел. Теперь оно принимает определенную форму, и к 1798 г. «Арифметические исследования» (Disquisitiones Arithmeticae) были практически закончены.

Чтобы ознакомиться с тем, что уже было сделано в высшей арифметике, и увериться, что он предоставляет должный кредит своим предшественникам, Гаусс в сентябре 1798 г. отправился в Хельмштедт, где была хорошая математическая библиотека. Там он обнаружил, что его слава опередила его. Он был сердечно принят ведавшим библиотекой профессором математики Иоганном Фридрихом Пфаффом (1765 -- 1825), в доме которого и поселился. Гаусс и Пфафф стали пылкими друзьями. Пфафф, очевидно, считал своим долгом узнать, чем занимается его трудолюбивый молодой друг, так как по вечерам они прогуливались, беседуя о математике. Поскольку Гаусс был не только скромным, но и сдержанным в рассказах о своих работах, Пфафф,
















АСИЗ-304.2020

Листт
















12

Изм.

Лист

докум.

Подпись

Дата






вероятно, не узнал от него столько, сколько мог бы узнать. Гаусс чрезвычайно восхищался профессором (он был тогда самым известным математиком Германии) не только ввиду его превосходных работ, но и ввиду его открытого простого характера.

Когда молодой гений, закончив Гёттингенский университет, стал беспокоиться о своем будущем, ему пришел на помощь герцог, который оплатил печатание его докторской диссертации (1799) и пожаловал стипендию, которая позволила ему продолжать научную деятельность.

Прежде чем осветить «Арифметические исследования», мы коснемся диссертации, за которую Гаусс был удостоен заочно степени доктора Хельмштедтским университетом: «Новое доказательство теоремы о том, что всякая целая рациональная алгебраическая функция одной переменной может быть разложена на действительные множители первой или второй степени».

В диссертации, явившейся вехой в алгебре, лишь одно неверно. Первые два слова в названии могут создать впечатление, что Гаусс просто добавил новое доказательство к уже известным другим. Ему следовало опустить слово

«новое». Его доказательство было первым (смысл этого будет разъяснен ниже). Некоторые математики до Гаусса публиковали то, что они считали доказательствами этой теоремы, обычно называемой основной теоремой алгебры, но никто из них не достиг цели3. С его бескомпромиссными требованиями к логической и математической строгости Гаусс настаивал именно на доказательстве и дал его впервые. Другая, эквивалентная формулировка теоремы состоит в том, что всякое алгебраическое уравнение с одним неизвестным имеет корень. Начинающие часто принимают это утверждение на веру, не имея даже отдаленного понятия, в чем его смысл.

Сомневаться в том, будто утверждение, что всякое алгебраическое уравнение имеет корень, что-либо значит, можно до тех пор, пока не сказано, какой именно корень имеет уравнение. Смутно мы чувствуем, что какое-то число будет удовлетворять уравнению, а не полфунта масла.

Гаусс превратил интуитивное представление в точное знание, доказав, что все корни любого алгебраического уравнения суть «числа» вида а + Ы, где а и b -- действительные числа (числа, которые соответствуют расстояниям -- положительным, отрицательным и нулевому, -- измеряемым от фиксированной точки О на данной прямой -- оси х декартовой геометрии), a i есть квадратный корень из -- 1. Эти новые «числа» называются комплексными.
















АСИЗ-304.2020

Листт
















13

Изм.

Лист

докум.

Подпись

Дата