Ёлок 4 предназначен для случайного изменения свободного чле на йц исследуемой кривой, которое выполняется следующим обра зом. Код свободного члена di(j-i) кривой, принадлежащей к семей ству кривых данной выборки, сдвигается влево и вправо на 11 дво ичных разрядов. Сдвиг выполняется логический, т. е. знаковые раз ряды также сдвигаются, а освободившиеся разряды заполняются нулями. Число с единицей в знаковом разряде, получившееся в результате сдвига влево, рассматривается как отрицательное. За тем над исходным числом и обоими результатами сдвига выполняет ся поразрядная операция сложения по модулю 2. Полученный ре зультат рассматривается как d;,-, если одновременно выполняются условия
|6/и(**)|<1, | 6М *” )1<1-
Здесь х*, х** соответственно те значения, при которых подын тегральная функция fuj-i) принимает максимальное и минимальное значения.
В противном случае код числа dij сдвигается вправо до тех пор, пока эти условия не будут выполнены. Знаковый разряд при этом не сдвигается. Если в знаковом разряде единица, то освобо дившиеся при сдвиге разряды заполняются единицами. В против ном случае — нулями.
При /= 1 значения du задаются так, чтобы в значащих разрядах
было примерно одинаковое |
количество нулей и единиц. |
Результаты проведенного эксперимента показали, что ни для |
одной из 1200 выборок не |
наблюдалось выполнение неравенства |
|
2 . _ |
2 |
|
ЗСкр |
' %<Н' |
Вкачестве примера можно рассмотреть три случайных выборки,
аименно, семейства определенных интегралов, подсчитанных для кубических парабол, квадратных парабол и прямых:
|
|
Р. |
|
|
|
h i |
— J |
(а ,х 3 |
+ |
Ь,хг + |
с,х + d lt) dx, |
|
|
a, |
|
|
|
|
|
|
Pj |
|
|
|
|
h i |
= |
J (b2x 2 + |
c2x + |
d 2j) dx, |
|
|
a2 |
|
|
|
|
|
Pa |
|
|
|
|
h i |
= |
\ |
(c3x + |
d tj ) dx. |
|
Ограничения, налагаемые на коэффициенты, пределы и шаг ин тегрирования кривых, позволили выбрать их так, как это показано
втабл. 7.
Впоследнем столбце приведено количество шагов интегрирова ния, равное длине цепочки округлений.
Записанные в таблице значения dtj следует понимать так, что
часть разрядной сетки, начиная с разряда, цена которого указана в таблице, и до последнего младшего разряда произвольным обра зом заполняется единицами и нулями. Промежуточные результаты для этих трех выборок сведены в табл. 8.