Файл: Физиология и биохимия растений.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 19.10.2024

Просмотров: 33

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

12. Химический состав и строение клеточной стенки, ее функциональное значение

34. Роль активной деятельности цитоплазмы и поглощении воды клеткой

54. Нарушение водообмена, его причины и последствия

75. Фотосинтез в различных лучах спектра. Спектры поглощения хлорофиллов, каратиноидов, хлоропластов листа

89. Связь дыхания и брожения. Пути окисления пировиноградной кислоты в растительных тканях

95. Дегидрогеназы, их химическая природа и характер действия

130. Ингибиторы их физиологическая роль и применение в практике

135. Световая стадия развития растений. Понятие о фотопериодизме Работы В. И. Разумова показали, что растение нуждается не в фотопериоде, как таковом, а в условиях для прохождения световой стадии. Оказалось, что можно выращивать даже растения короткого дня на непрерывном свете, лишь бы этот свет был достаточно низкой напряженности и воспринимался бы как темнота. В опыте Разумова просо бухарское, памирское и иркутское выращивалось сначала на коротком дне, а остальную часть суток — при освещении в 10 люксов. У всех этих сортов не наступало задержки в выметывании метелки при таком освещении. У проса воронежского и безенчукского только дополнительное освещение в 0,5 люкса не вызывало задержки. И, наконец, просо монгольское, корейское и китайское давало метелку только на коротком дне. Освещение в 0,5 люкса уже вызывало задержку в выбрасывании метелки.Из изложенного ясно, что учение о фотопериодизме не может считаться особой теорией развития и является лишь частью этой теории.Особенно ясным и убедительным фактом, доказывающим стадийную природу фотопериодизма, является так называемое фотопериодическое последействие, открытое русским ученым Эгизом и изученное более подробно Разумовым. Оказывается, для ускорения плодоношения вовсе нет необходимости воздействовать на растения соответствующим фотопериодом в течение всей его жизни. Для этого достаточно подвергать его этому воздействию в течение сравнительно короткого времени в период, предшествующий образованию цветочных органов. После стадии яровизации, на скорость прохождения которой световой режим не оказывает никакого влияния, наступает следующая стадия развития, световая. Для прохождения этой стадии одни растения нуждаются в определенном сроке пребывания на свету, так как у них свет ускоряет наступление плодоношения, другие же растения нуждаются в определенном сроке пребывания в темноте, так как у них свет задерживает плодоношение. Первые и будут растения длинного дня, у них на световой стадии развитие всего скорее идет при непрерывном свете. У растений короткого дня те стадийные изменения, которыми обусловливается прохождение световой стадии, скорее протекают в темноте. Но так как в непрерывной темноте растения не могут существовать в силу прекращения процесса фотосинтеза, то для этих растений оказывается необходимой периодическая смена света и темноты, причем в течение светлого периода суток у них идут процессы питания, а в течение темного периода стадийные изменения.Укорачивания дня имеет значение для образования клубней у картофеля и для перехода ряда древесных пород в состояние зимнего покоя. Независимо оттого как проходит световая стадия — при коротком или при длинном дне, — переход к покою связан в первую очередь с укорочением дня.Последний вопрос имеет и очень большое практическое значение. В условиях длинного северного дня многие культурные растения не впадают в состояние покоя и вымерзают полностью или очень страдают от морозов. 152. Созревание клубнеплодов и корнеплодов Созревание таких частей растения, как клубни и корпи, имеет особенности. Так, клубнеобразованне у большинства сортов картофеля начинается в период бутонизации. Во время созревания клубней в основном наблюдается синтез крахмала и белков. В начальный период клубнеобразования интенсивность синтеза крахмала незначительна. Сахара, поступающие из надземных органов, остаются в большинстве клубней в свободном состоянии.В летний период (июль -- август) содержание крахмала в клубнях за декаду может увеличиваться на 3--4%. т.е. прирост его за сутки составляет 0,3--0,4%. Суточный прирост массы клубней картофеля на гнездо равен 30 -- 40 г, крахмала -- до 6 г. Отток пластических веществ к клубням происходит до полного отмирания листьев и стеблей.Установлено, что у большинства сортов картофеля максимальное содержание крахмала наступает раньше, чем заканчивается период вегетации. Дальнейшее нахождение клубней па растении нежелательно, так как приводит к снижению содержания в них сухих веществ и крахмала. Уменьшение количества крахмала в клубнях в конце физиологического созревания объясняется расходованием его на дыхание, так как отсутствует приток к ним сахаров.В клубнях картофеля при их созревании меняется соотношение активности а- и (5-амилазы и фосфорилазы). Одновременно с биосинтезом крахмала наблюдается и накопление белков. Однако биосинтез их осуществляется медленнее, чем крахмала. В молодых клубнях белков меньше, чем в зрелых. Однако в связи с тем, что на первых этапах созревания клубней биосинтез крахмала замедленный, соотношение крахмал: белок ниже, чем в зрелых клубнях. Исследования (И. Г. Вывалько и др.) с применением метода меченых атомов показали, что аминокислоты (алаппн. глицин, тирозин) наряду с глюкозой и пируватом могут служить исходными веществами для биосинтеза крахмала в клубнях картофеля. Предварительно эти аминокислоты участвуют в реакциях дезаминирования и превращения в молекулы гексоз. Накопление белков, как и накопление крахмала, зависит от сорта картофеля. У ранних сортов картофеля, по данным А. С, Вечера и М. Н. Гопчарпка, наибольшее количество белкового азота наблюдалось на 90--100-и день после посадки, т. е. в период максимального накопления сухих веществ в клубнях. В дальнейшем происходило некоторое снижение содержания белков. У позднеспелых сортов наибольшее количество белкового азота отмечалось на 120--130-й день после посадки.Как правило, поздние сорта картофеля характеризуются более высоким содержанием растворимого в клеточном соке белка и белкового азота в клубнях по сравнению с ранними, среднеранними п среднеспелыми сортами. По мере созревания клубней количество небелкового азота возрастает. Чем сорт более раннеспелый, тем интенсивнее идет накопление небелкового азота в клубнях. Поэтому запаздывание с уборкой ранних сортов картофеля, предназначенных для пищевых целей, недопустимо, так как приводит к уменьшению содержания белка п ухудшению качества клубней.В клубнях картофеля синтезируется небольшое количество жиров и липидов -- 0,10--0,15% массы сырого вещества.. Хотя количество жира в картофеле невелико, он имеет большое значение, повышая пищевую и кормовую ценность этой культуры. Доказано, что более 50% жирных кислот картофеля составляют ненасыщенные жирные кислоты. Клубни картофеля имеют кислую реакцию (pH сока 5,6--6,2), что связано с содержанием значительного количества органических кислот. Среди них преобладает лимонная кислота -- 0,4--0,8% сырой массы клубней. Наибольшее количество лимонной кислоты (1%) характерно для свежеубранных клубней.В зрелых клубнях содержится в среднем следующее количество витаминов, мг % на массу сырого вещества: С--10--12, РР--0,4--2, Вс--0,9, В,--0,05--2, В*--0,1--0,2, каротина --до 0,05. При формировании клубней наблюдается интенсивный синтез витамина С, что связывают с превращением гексоз и соответствующих уроноиновых кислот (В. Л. Кретович), Максимальное содержание витамина С отмечается в клубнях в период наиболее интенсивного роста, к моменту наступления физиологическом зрелости клубней оно уменьшается.Условия выращивания -- питания и водоснабжения -- в значительной мере влияют на химический состав клубней картофеля. Бесхлорные калийные удобрения способствуют биосинтезу крахмала. Картофель очень чувствителен к наличию хлора в почве. Вносимый в почву в виде хлористого калия, он вызывает глубокие изменения в обмене веществ растений картофеля, в результате чего снижается урожай и ухудшаются вкусовые н кулинарные качества клубней. Хлоридные формы удобрений повышают интенсивность потемнения сырых и вареных клубней. Потемнение мякоти сырых клубней картофеля связывают с ферментативным окислением фенольных соединений (главным образом тирозина) при участии дифенолоксидаз. Эти формы удобрении увеличивают концентрацию хлорогеновой кислоты в клубнях. Почернение мякоти клубней после варки обусловливается образованием комплекса иона трехвалентното железа и орто-дигидрофенола. Лимонная кислота образует с железом бесцветный комплекс, ослабляя степень почернения клубней. Увеличение содержания калия в клубнях при внесении сульфатных форм удобрений стимулирует биосинтез и накопление лимонной, кислоты, в результате потемнение клубней при варке ' уменьшается. Исследования Р. Холидея показали, что недостаток не только калия, но и фосфора и кальция усиливает почернение картофеля при варке. Склонность к нему возрастает при высоком содержании железа в почве.По данным Д. Н. Прянишникова, при внесении под картофель сульфата калия в клубнях накапливается 20% крахмала, а при использовании калийной соли--17%. Применение азотных удобрений повышает содержание крахмала и белков в клубнях. почвенный климатический корнеплод солеустойчивостьВ корнеплодах сахарной свеклы основной составной частью является сахароза -- в среднем 16--20%; на воду приходится 75--80%. В них содержатся также дисахарид мальтоза (I -- 2%), трисахарид рафиноза, моносахариды глюкоза и фруктоза (до 1%). В состав корнеплодов входят пектиновые вещества в виде водонерастворимого протопектина, содержание которого равно 1,5--2,5%. Общее количество азотистых веществ в корнеплодах составляет 0,15--0,25%, в основном они состоят из белков и свободных аминокислот. В корнеплодах физиологически зрелой сахарной свеклы содержится 0,006--0,1% крахмала, 3--5% органических кислот (щавелевая, лимонная, яблочная, винная, янтарная и др.), около 1% клетчатки. В молодых корнеплодах, где происходит интенсивное новообразование клеток, много азотистых веществ, моносахаридов и воды. Кроме того, в корнеплодах накапливаются вещества, составляющие так называемый «вредный азот», который при производстве сахара препятствует его кристаллизации. Указанный азот состоит из холина, который образуется в результате ферментативного метилирования аминоэтилового спирта; бетаина, синтезируемого в процессе метилирования азота гликокола; аспарагина и глутамина. Бетаина -- (CH3)3N+CH2-СОО

176. Физиологические особенности засухоустойчивых сельскохозяйственных условий

180. Влияние засоления на растения

Список использованных источников

176. Физиологические особенности засухоустойчивых сельскохозяйственных условий


Засухоустойчивость сельскохозяйственных растений — это комплексный признак, связанный с рядом их физиологических особенностей. Засухоустойчивые растения способны переносить временное обезвоживание с наименьшим снижением ростовых процессов и урожайности. По данным И. И. Туманова, длительное завядание, вызванное пересыханием почвы, мало отражается на урожае проса, но очень сильно снижает урожай овса. Н. А. Максимов (1958) отмечает, что нет единого типа засухоустойчивости сельскохозяйственных культур, как нет и универсальных признаков засухоустойчивости. Из общих признаков следует отметить меньшие отрицательные последствия обезвоживания и более быстрое восстановление основных физиологических функций после засухи у более засухоустойчивых видов и сортов сельскохозяйственных культур.

Засухоустойчивость определяется способностью растительного организма как можно меньше изменять процессы обмена веществ в условиях недостаточного водоснабжения. У более засухоустойчивых растений при нарастающем обезвоживании дольше сохраняются синтетические процессы, не повреждаются или меньше повреждаются мембранные системы клеток, обеспечивающие их нормальный гомеостаз, сохраняются нормальные физико-химические свойства протоплазмы (вязкость, эластичность, проницаемость) ; больше выражен ксероморфизм.

В. Р. Заленский (1904) показал, что анатомическая структура листьев растений закономерно изменяется в зависимости от их ярусности. Верхние листья растут в условиях несколько затрудненного водоснабжения, что формирует их мелкоклеточность, они имеют больше устьиц на единицу поверхности, развитую сеть проводящих пучков. Чем выше расположен лист, тем более высокой транспирацией и большей интенсивностью фотосинтеза он обладает. Указанные закономерности получили название закона Заленского. Растения в более засушливых условиях отличаются меньшими размерами, формируют ксероморфную структуру листьев как одно из анатомических приспособлений к недостатку воды.

Ксероморфная структура — один из признаков при селекции засухоустойчивых сортов. У злаков и других растений важное значение имеет наличие как бы чехла из более старых высохших и отмерших листьев, окружающих основание стебля и покрывающих находящиеся в центре этого чехла молодые точки роста (Н. А. Максимов, 1958). У засухоустойчивых растений относительно низкая величина транспирационного коэффициента.


Засухоустойчивые виды и сорта растений способны без особого вреда терять часть своей воды и даже в периоды наибольшей сухости не закрывать устьица и продолжать фотосинтез. Поэтому у ряда культур, в том числе у пшеницы, одним из важных признаков засухоустойчивости является суточный ход устьичных движений. Н. А. Максимов отмечал, что устойчивые южнорусские пшеницы в условиях засушливого климата Ростовской области держат свои устьица открытыми в течение всего дня, тогда как менее устойчивые канадские пшеницы закрывают их рано утром, а потому рано прекращают фотосинтез и дают пониженный урожай. Различия в засухоустойчивости между отдельными сортами и культурами определяются также развитием корневой системы, наличием запасов воды в стеблях или корнях, размерами и характером листовой поверхности и др.

Помимо анатомо-морфологических засухоустойчивые виды и сорта имеют биохимические механизмы защиты, способствующие в условиях засухи поддерживать достаточно высокий уровень физиологических процессов растений. Эти механизмы предотвращают обезвоживание клетки за счет накопления низкомолекулярных гидрофильных белков, связывающих значительное количество воды, взаимодействия их с пролином, концентрация которого значительно возрастает, увеличения моносахаров, обеспечивающих детоксикацию продуктов распада (так, образующийся аммиак обезвреживается с участием возрастающих при засухе органических кислот) ; способствуют восстановлению нарушенных структур цитоплазмы при условии сохранения от повреждения генетического аппарата клеток. Защита молекул ДНК от вредного действия обезвоживания обеспечивается частичным переводом их в пассивное состояние с помощью ядерных белков или, возможно, специальных стрессовых белков.

Засуха приводит к адаптивным изменениям гормональной системы регуляции растений. Содержание гормонов — активаторов роста и стимуляторов роста фенольной природы уменьшается, а абсцизовой кислоты и этилена возрастает. Все это обеспечивает остановку ростовых процессов, а, следовательно, выживание растений в жестких условиях засухи. В первый период засухи стремительно возрастает содержание АБК в листьях, обеспечивающей закрывание устьиц, уменьшение потери воды через транспирацию.

При развитии засухи АБК, активируя синтез пролина

, способствует запасанию гидратной воды в клетке, тормозит синтез РНК и белков, накапливаясь в корнях, задерживает синтез цитокинина, способствует переводу обмена веществ клеток в режим покоя. В условиях водного дефицита отмечаются увеличение биосинтеза и выделения этилена, у многих растений накапливаются ингибиторы роста фенольной природы (хлорогеновая кислота, флавоноиды, фенолкарбоновые кислоты). Снижение содержания ИУК происходит вслед за остановкой роста. Так, в листьях подсолнечника, в верхушках стеблей и колосках пшеницы и других растений рост начинает подавляться при влажности почвы 60 % Н В, а количество ауксинов заметно снижается только при снижении влажности почвы до 30 % НВ.

Опрыскивание растений в условиях засухи ауксином, цитокинином или гиббереллином усиливает отрицательное действие водного дефицита на растение. Обработка цитокинином в период репарации после засухи восстанавливает функции растений.

180. Влияние засоления на растения


Засоление связано главным образом с повышенным содержанием натрия в почве. В зависимости от преимущественного накопления отдельных солей натрия засоление может быть сульфатным, хлоридным, содовым или смешанным. Наиболее вредное влияние оказывают ионы Na+ и СI-.

Действие засоления на растительные организмы связано с двумя причинами: ухудшением водного баланса и токсическим влиянием высоких концентраций солей. Засоление приводит к созданию в почве низкого (резко отрицательного) водного потенциала, поэтому поступление воды в растение сильно затруднено. Под влиянием солей происходят нарушения ультраструктуры клеток, в частности изменения в структуре хлоропластов. Особенно это проявляется при хлоридном засолении.

Вредное влияние высокой концентрации солей связано с повреждением мембранных структур, в частности плазмалеммы, вследствие чего возрастает ее проницаемость, теряется способность к избирательному накоплению веществ. В этом случае соли поступают в клетки пассивно вместе с транспирационным током воды.

Поскольку в большинстве случаев засоленные почвы располагаются в районах, характеризующихся высокой летней температурой, интенсивность транспирации у растений очень высокая. В результате солей поступает много, и это усиливает повреждение растений. Надо учесть также, что на засоленных почвах большая концентрация натрия препятствует накоплению других катионов, в том числе и таких необходимых для жизни растения, как калий и кальций.


Для того чтобы избежать осмотического стресса важное значение имеет осморегуляция. Для этого растение использует два пути: накопление ионов и особенно образование растворенных органических веществ, таких как глицинбетаин, сорбитол, сахароза, пролин.

Одной из причин большей устойчивости к засолению растений с САМ-метаболизмом является накопление органических кислот. Другой стороной вредного влияния солей является нарушение процессов обмена, Работами Б. П. Строганова показано, что под влиянием солей в растениях нарушается азотный обмен, накапливается аммиак и другие ядовитые продуктом.

Необходимо отметить, что влияние засоления тесно связано с изменениями в обмене соединений серы. Показано, что при хлоридном засолении растения испытывают резкий дефицит соединений серы. Возникают типичные признаки серного голодания.

В условиях засоления, связанного с высокой концентрацией сернокислых солей, наблюдается обратный процесс -- избыточное накопление серы. Последнее приводит к накоплению ряда токсичных продуктов (Н.И. Шевякова). Повышенная концентрация солей, особенно хлористых, может действовать как разобщитель процессов окисления и фосфорилирования и нарушать снабжение растений макроэргическими фосфорными соединениями.

Высокая концентрация Na+ и (или) Сl- тормозит фотосинтез. Это связано с чувствительностью к высокой концентрации солей процессов фосфорилирования и карбоксилирования. Повышенная концентрация солей инактивирует работу белков, тормозит их синтез. Вместе с тем показано, что при действии солей активируется работа многих генов, кодирующих ферменты синтеза веществ, участвующих в осморегуляции. Так, пролинсинтаза является ключевым ферментом синтеза пролина, альдегиддегидрогеназа вызывает аккумуляцию бетаина.

Другие ферменты (например, глицеринальдегидфосфатдегидрогеназа) приводят к увеличению растворимых Сахаров, что влияет на осмотическую концентрацию. У САМ растений под действием солей экспрессируются многие ферменты САМ -- пути: ФЕП-карбоксилаза, малатдегидрогеназа и др. Показано, что осмотический стресс регулирует гены, кодирующие АТФазу, аквапорины.

Отрицательное действие высокой концентрации солей сказывается раньше всего на корневой системе растений. При этом в корнях страдают наружные клетки, непосредственно соприкасающиеся с раствором соли. В стебле наиболее подвержены действию солей клетки проводящей системы, по которым раствор солей поднимается к надземным органам.

Список использованных источников




  1. Лебедев, С.И. Физиология растений / С.И. Лебедев. – М.: Колос, 1988. 544 с.

  2. Третьяков, Н.Н. Физиология и биохимия сельскохозяйственных растений. / Н.Н. Третьяков, Е.И. Кошкин, Н.М. Макрушин и др.; Под ред. Н.Н. Третьякова. – М.: Колос, 2000. 640 с.

  3. Полевой, В.В. Физиология растений / В.В. Полевой. – М.: Высшая школа, 1989. 464 с.

Караваево 2020