ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 28.03.2024
Просмотров: 212
Скачиваний: 0
СОДЕРЖАНИЕ
химических элементов в земной коре
Особенности распределения химических
2.3. Биологический круговорот химических
2.4. Природные вариации концентраций
химических элементов в организмах
БИОГЕОХИМИЯ ГАЗОВОЙ ОБОЛОЧКИ ЗЕМЛИ
3.1. Биогеохимическая эволюция состава
организмов в массообмене газов
3.2. Геохимия и биогеохимия аэрозолей
3.3. Значение атмосферного массопереноса
водорастворимых форм химических
4.1. Состав Мирового океана — результат
4.3. Трансформация геохимического состава
природных растворов на контакте речных и
5.1. Планетарное значение педосферы
5.2. Органическое вещество педосферы
5.3. Роль почвы в регулировании
углерод-кислородного массообмена
5.4. Биогеохимическая трансформация
минерального вещества педосферы
5.5. Проблема возникновения почв и
эволюция почвообразования в истории
5.6. Распределение рассеянных элементов
биогеохимических циклов тяжелых
ГЛОБАЛЬНЫЕ БИОГЕОХИМИЧЕСКИЕ ЦИКЛЫ
7.2. Влияние живого вещества на
геохимию кислорода и водорода в биосфере
7.5. Общие черты циклов и распределения
В БИОСФЕРУ В РЕЗУЛЬТАТЕ МОБИЛИЗАЦИИ ИЗ ЗЕМНОЙ КОРЫ
8.5. Общие черты циклов и распределения
9.3. Общие черты циклов и распределения
масс тяжелых металлов в биосфере
10.1. Биогеохимическая зональность
10.2. Геохимическая неоднородность
10.3. Элементарный ландшафт (элементарная
хорологическая единица биосферы Мировой
11.1. Биогеохимия арктических ландшафтов
12.1. Биологический круговорот элементов
12.3. Водная миграция элементов в зоне
бореальных и суббореальных лесов
13.1. Биологический круговорот элементов
в аридных растительных сообществах
13.2. Особенности биологического
круговорота в экстрааридных пустынях
13.3. Биогеохимические особенности
13.4. Взаимосвязь биогеохимических
процессов с водной и атмосферной
миграцией элементов в аридных условиях
БИОГЕОХИМИЯ ТРОПИЧЕСКОГО ПОЯСА
14.1. Биологический круговорот химических
элементов в распространенных тропических
14.2. Биогеохимические особенности
15.2. Поступление тяжелых металлов
в экогеосистемы островов из атмосферы
биогеохимических циклов хозяйственной
деятельностью человеческого общества
16.2. Локальные (импактные) антропогенные биогеохимические аномалии тяжелых металлов
Таблица 4.4
Вынос химических элементов, содержащихся
во взвешенном веществе рек
Химический элемент | Концентрация, мкг/л (В. В. Гордеев, 1983) | Годовой вынос взвешенных форм элементов, 103 т/год | Сумма растворенных и взвешенных форм, 103 т/год | Количество взвешенных форм от суммарного выноса, % | ||
Si | 117000 | 4797000 | 5030700 | 95,4 | ||
А1 | 38200 | 1 566 200 | 1 569 275 | 99,8 | ||
Fe | 23500 | 963 000 | 990970 | 97,2 | ||
Са | 11500 | 471 500 | 1 004 500 | 46,9 | ||
К | 6900 | 282 900 | 344 400 | 82,1 | ||
Mg | 5750 | 235750 | 371 050 | 63,5 | ||
Na | 4600 | 188600 | 373 100 | 50,4 | ||
Ti | 1840 | 75440 | 75604 | 92,8 | ||
Р | 510 | 20910 | 21730 | 96,2 | ||
Mn | 500 | 20500 | 20910 | 98,0 | ||
Ва | 280 | 11480 | 12505 | 91,8 | ||
Zn | 143 | 5863 | 6683 | 87,7 | ||
Zr | 92 | 3772 | 3875 | 97,3 | ||
Sr | 69 | 2829 | 6109 | 46,3 | ||
Pb | 69 | 2829 | 2870 | 98,6 | ||
Rb | 55 | 2255 | 2329 | 96,8 | ||
Cr | 60 | 2460 | 2501 | 98,4 | ||
Ni | 38,6 | 1583 | 1705 | 92,8 | ||
Cu | 37 | 1517 | 1825 | 83,1 | ||
В | 32 | 1312 | 2050 | 64,0 | ||
Li | 14 | 574 | 664 | 86,4 | ||
Sc | 9,2 | 377 | 380 | 99,2 | ||
Co | 8,3 | 340 | 350 | 97,1 | ||
Ga | 8,3 | 340 | 344 | 98,8 | ||
Th | 4,6 | 187 | 189 | 99,6 | ||
As | 2,3 | 94,3 | 176 | 53,4 | ||
Mo | 1,4 | 57,4 | 94,0 | 60,6 | ||
Sb | 0,9 | 36,9 | 74,0 | 50,0 | ||
Ag | 0,6 | 24,6 | 32,8 | 75,0 | ||
Cd | 0,32 | 13,1 | 21,9 | 59,8 | ||
U | 0,14 | 57,4 | 17,7 | 32,2 |
Важно отметить, что относительное содержание химических элементов в речных взвесях не соответствует кларкам земной коры. Следовательно, взвешенное вещество рек — не механически измельченный материал земной коры, а результат его определенного преобразования. Интенсивность такого преобразования может быть оценена значением коэффициента Кр, равным отношению средней концентрации элемента в речной взвеси к его кларку гранитного слоя земной коры континентов.
По значениям коэффициента Крможно выделить три группы элементов. Элементы первой группы характеризуются значениями Крменьше единицы, т.е. уменьшением относительного содержания во взвесях по сравнению с кларком гранитного слоя земной коры. В эту группу входят кальций и натрий, а также строн-Чии, барий, литий. Относительное содержание магния во взвесях по отношению к земной коре существенно не меняется (Кр=1).
Вторую группу образуют элементы, у которых Крравны или немногим более единицы. Таковы титан, цирконий, галлий, а также железо и марганец. К третьей группе относятся элементы, концентрация которых возрастает во взвесях, а значение Кр — от 2 до 9. Эту группу образуют тяжелые металлы: свинец, цинк, медь, никель, кобальт, хром, ванадий, кадмий.
Ясно выраженная аккумуляция тяжелых металлов в речных взвесях дает основание предполагать, что это явление связано с биогеохимическими процессами. В водную миграцию на суше вовлекаются химические элементы, не захваченные в биологический круговорот. Возможно, что вынос значительных масс тяжелых металлов, прочно фиксированных на дисперсных продуктах выветривания и почвообразования, является одним из механизмов предохранения живого вещества суши от избыточных масс этих элементов.
Природные геохимические аномалии в поверхностных водах суши. На участках высоких концентраций рассеянных химических элементов поверхностные воды обогащаются элементами, присутствующими в избытке. Так образуются природные гидрогеохимические аномалии. Особенно заметное обогащение происходит в тех случаях, когда поверхностные и грунтовые воды контактируют с сульфидными рудами. Окисление сульфидов железа сопровождается гидролизом сульфатов, выпадением гидроксидов железа и образованием серной кислоты, которая усиливает растворяющую способность воды. Возникающие при окислении сульфидов цинка, меди, никеля сульфаты хорошо растворимы и активно вовлекаются в водную миграцию.
В результате реакций с другими растворенными соединениями и взаимодействия с поверхностью взвешенных частиц значительная часть мигрирующих металлов относительно быстро выводится из раствора и их концентрация достигает уровня местного геохимического фона По этой причине протяженность природных гидрогеохимических аномалий в речных водах небольшая и редко превышает несколько сотен метров.
На значительно большее расстояние — до нескольких километров — распространяются аномально высокие концентрации в донных осадках, представляющих собой осажденные частицы водных взвесей. Определение металлов в воде небольших водотоков и особенно в их донных отложениях успешно использовалось при рекогносцировочных геохимических поисках месторождений руд во многих районах нашей страны, а также в Канаде, США, Англии, Замбии, Уганде, на Филиппинах и в других странах.
Аккумуляция химических элементов в воде оказывает влияние на водные биоценозы. Широко распространены различные проявления эвтрофизации небольших плохо проточных водоемов. Концентрация металлов в плавающих и погруженных растениях в водоемах конечного стока, как правило, выше среднепланетарных значений. Высокие природные концентрации некоторых элементов в поверхностных и грунтовых водах отдельных районов вызывают повышенное содержание этих элементов в местной растительности. Если растительность используется в качестве корма для сельскохозяйственных животных, то это вызывает заболевание скота. Подобные случаи изучены в США Р. Ибенсом и X. Шаклет-том (1973), в Ирландии и Англии Дж.Уэббом, И.Торнтоном и К.Флетчером (1966), в нашей стране В.В.Ковальским (1974).
В заключение необходимо подчеркнуть, что природные геохимические аномалии в поверхностных водах Мировой суши очень локальны и не оказывают заметного влияния на баланс масс химических элементов в глобальных биогеохимических циклах.
4.3. Трансформация геохимического состава
природных растворов на контакте речных и
океанических вод
С суммарным речным стоком в океан поступают огромные массы химических элементов. Ежегодно с речным стоком выносится в составе взвесей и растворенных форм соответственно (млн т): железа — 963 и 27; марганца — 20,5 и 0,41; цинка — 5,86 и 0,82; меди— 1,51 и 0,28; свинца — 2,8 и 0,04; никеля — 1,58 и 0,12; кобальта — 0,34 и 0,01. Согласно данным А. П. Лисицина и др. (1983), из этого количества более 92 % выпадает в краевых морях и особенно в устьях рек, лишь 7,8 % достигает глубоководных областей океана.
Вместе с осаждением значительной части взвесей и соединений главных химических элементов осаждаются и рассеянные металлы, часто образующие крупные месторождения. Значительная часть запасов руд марганца, меди, ванадия и других металлов имеет осадочное происхождение.
Еще большее количество металлов выпадает в рассеянном состоянии, осаждаясь с распространенными соединениями. Например, быстрое разрушение комплексных железоорганических соединений в щелочной морской воде и энергичное осаждение образовавшихся сгустков гидроксидов железа сопровождаются сорбционным захватом скандия, кобальта, никеля, меди, ванадия и др
При осаждении фосфатов накапливается другой комплекс рассеянных элементов.
Таким образом, периферийная зона Мировою океана служит глобальной геохимической ловушкой, задерживающей большую часть вещества, сносимого с континентов. Тем не менее значительные массы рассеянных элементов проходят этот фильтр и поступают в открытый океан.
Проблема геохимии океана рассмотрена в монографии В.Коржа (1991). Для выяснения влияния океана на некоторые биогеохимические процессы, протекающие на суше, необходимо отметить следующее. Геохимическая структура состава океанических и континентальных вод принципиально различается. Если в речных водах преобладающая часть рассеянных элементов сосредоточена в материале взвесей, то в океане возрастает удельное значение растворенных форм. Количество форм элементов в составе взвесей в океанической воде в сотни и тысячи раз меньше их растворимых форм. Даже такие не склонные к нахождению в растворе элементы, как свинец, скандий, иттрий, цирконий, титан, хром, присутствуют в океане преимущественно в растворенном состоянии.
Кроме того, состав Мирового океана формируется под воздействием не только речного стока, но и поступлений из недр Земли в результате вулканической деятельности и процессов формирования океанической коры в тектонически активных зонах дна.
Сопоставление состава континентальных и океанических вод также выявляет их различие. В речной воде в тысячи раз меньше хлора, брома, натрия, в сотни раз — бора, сульфатной серы, магния, калия, в десятки — стронция, кальция, лития, рубидия, фтора, иода. В то же время, в речных водах в десятки раз больше марганца, иттрия, свинца, тория, значительно больше кремния, титана, цинка, меди. Следовательно, при поступлении речных вод в Мировой океан происходит существенная перегруппировка растворимых масс рассеянных элементов. Это наглядно представлено на графиках (рис. 4.1). Столь сильное различие в составе воды океана и суши в значительной мере обусловливает неодинаковую концентрацию химических элементов в живом веществе океана и суши, отмеченную в гл. 2.
Современный состав Мирового океана является итогом длительной истории. Как показано в подразд. 4.1, основную массу солей морской воды составляют хлориды и сульфаты натрия, магния, кальция и калия. Такое соотношение катионогенных и анио-ногенных химических элементов с позиций геохимии парадоксально. Первые содержатся в земной коре в количестве нескольких процентов каждый, вторые — в сто раз меньше (кларк хлора- 1,710-2 %, кларк серы - 4,710-2 %).
Так как катионы и анионы находятся в морской воде в эквивалентных количествах, то они не могли поступать из одного источника, в частности за счет выщелачивания из земной коры континентов. Расчеты показывают, что из того количества хлора, который в настоящее время имеется в океане в форме ионов, всего лишь 1 — 2 % могли быть извлечены из земной коры. Следовательно, катионы и анионы морской воды имеют разное происхождение. Помимо упомянутых хлора и серы к анионогенным элементам океана относятся азот, бром, иод, бор, мышьяк, селен, некоторые металлы, в частности ртуть. Есть все основания предполагать, что поступление основной массы этих элементов связано с дегазацией вещества мантии Земли.
Соотношение масс гидросферы и земной коры близко к соотношению паров воды и силикатного расплава при излиянии базальтов. Очевидно, выплавление первичной земной коры базальтового состава сопровождалось выносом паров воды, из которых после конденсации был образован древний океан. Одновременно в газообразной форме выносились перечисленные выше анионо-генные элементы. В дальнейшем в результате выветривания и почвообразования, при нарастающем воздействии биогеохимических процессов происходило выщелачивание катионогенных элементов из земной коры и в океане постепенно установилось существующее ныне равновесие анионов и катионов.