Файл: 1. Современные представления о строении и функции мембран.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 10.04.2024

Просмотров: 258

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Внешний путь. Мембраны поврежденных клеток тканей выделяют в плазму крови тканевый фактор — трансмембранный белок. Тканевый фактор с активированным им фактором свертывания крови VII активируют фактор Х. Фактор Ха соединяется с тканевыми фосфолипидами и фактором V. Образовавшийся комплекс превращает часть тромбина в протромбин. Тромбин начинает действовать как протеолитический фермент на фибриноген и активировать фактор V.

Внутренний путь. Разрушение тромбоцитов и эритроцитов активирует фактор XII. Фактор XIIа превращает XI в Xiа, который формирует комплекс ф.IXa+VII+тромбоцитарный фосфолипид+ионы кальция.

Протромбин синтезируется в печени. Для его образования необходим вит.К. Тромбин — протеолитический фермент, отщепляет от молекулы фибриногена 4 пептида мономера. Каждый из которых имеет 4 свободные связи. Соединяясь друг с другом, они формируют сеть волокон фибрина. Под влиянием фибринстабилизирующего фактора в фибрине образуются дополнительные дисульфидные связи, и сеть фибриовых волокон становится прочной. В этой сети задерживаются тромбоциты, лейкоциты, эритроциты, белки плазмы, формируя Фибриновый тромб. После образования сгустка через 30-60 минут начинается его сокращение, происходящее за счет сокращения нитей актина и миозина тромбоцитов, а также нитей фибрина. В результате фибриновый сгусток сжимается в плотную массу, тромб уплотняется и становится непроницаемым для клеток и плазмы крови. Продолжению свертывания крови в кровеносном русле препятствует противосвертывающая система крови.


130.Факторы, препятствующие свертыванию крови: антиагреганты и антикоагулянты крови, механизмы их действия.

Физиологические антикоагулянты поддерживают кровь в жидком состоянии и ограничивают процесс тромбообразования. К ним относятся:

-антитромбин IIIосновной плазменный кофактор гепарина, ингибирует активность тромбина.

-Гепаринтрансформирует антитромбин 3 в антикоагулянт немедленного действия.

-протеины C,S — их синтез активирует витамин К. Пр. С высвобождает активатор плазминогена из стенки сосуда, инактивирует активированные факторы VIII,V. Пр. S снижает способность тромбина активировать те факторы.

Регуляция агрегации тромбоцитов сосудистой стенки. Адгезии тромбоцитов к неповрежденной сосудистой стенки препятствует: -эндотелиальные клетки

-синтезируемые эндотелиальными клетками сосудов :

простациклин I2 ингибитор агрегации тромбоцитов, образуется в венозных и артериальных эндотелиальных кл. из арахидоновой кислоты.

- тромбомодулин рецептор тромбина на эндотелии сосудов — взаимодействует с тромбином и активирует белок С, обладающий способностью высвобождать тканевый активатор плазминогена из стенки сосуда.

-Окзид азотаугнетает адгезию и рекрутирование тромбоцитов.

-Тканевый активатор плазминогенаобеспечивает прямую локальную тромболитическую активность в отношении образовавшегося тромба.

-Эктоэнзимы

-Ингибитро активатора плазминогена — Iсвязываясь с плазминогеном, инактивирует его, участвуя в регуляции фибринолиза.

131. Система фибринолиза. Активаторы и ингибиторы системы фибринолиза.

Фибринолиз является неотъемлемой частью системы гемо­стаза, всегда сопровождает процесс свертывания крови и активиру­ется факторами, принимающими участие в этом процессе.

Являясь важной защитной реакцией, фибринолиз предотвращает закупорку кровеносных сосудов фибриновыми сгустками. Кроме того, фибри­нолиз ведет к реканализации сосудов после остановки кровотечения.

 Ферментом, разрушающим фибрин, является плазмин (иног­да его называют «фибринолизин»), который в циркуляции находится в неактивном состоянии в виде профермента плазминогена.

 Фибринолиз, как и процесс свертывания крови, может протекать по внешнему и внутреннему механизму (пути). Внешний механизм активации фибринолиза осуществляется при участии тканевых ак­тиваторов, которые синтезируются главным образом в эндотелии сосудов. К ним относятся тканевый активатор плазминогена (ТАП) и урокиназа. Последняя также образуется в юкстагломеруляриом комплексе (аппарате) почки (см. главу 12). Внутренний механизм активации фибринолиза осуществляется плазменными активатора­ми, а также активаторами форменных элементов крови — лейко­цитов, тромбоцитов и эритроцитов и разделяется на Хагеман-зависимый и Хагеман-независимый. Хагеман-зависимый фибринолиз протекает под влиянием факторов XIIа, калликреина и ВМК, ко­торые переводят плазминоген в плазмин. Хагеман-независимый фиб­ринолиз осуществляется наиболее быстро и носит срочный характер. Его основное назначение сводится к очищению сосудистого русла от нестабилизированного фибрина, образующегося в процессе внутрисосудистого свертывания крови.



 Образовавшийся в результате активации плазмин вызывает рас­щепление фибрина (схема 6.3). При этом появляются ранние (круп­номолекулярные) и поздние (низкомолекулярные) ПДФ.

 В плазме находятся и ингибиторы фибринолиза. Важнейшими из них являются α2-антиплазмин, связывающий плазмин, трипсин, калликреин, урокиназу, ТАП и, следовательно, вмешивающийся в процесс фибринолиза как на ранних, так и на поздних стадиях. Сильным ингибитором плазмина служит α1-протеазный ингибитор. Кроме того, фибринолиз тормозится α2-макроглобулином, C1-протеазным ингибитором, а также рядом ингибиторов активатора плаз­миногена, синтезируемых эндотелием, макрофагами, моноцитами и фибробластами.

 Фибринолитическая активность крови во многом определяется соотношением активаторов и ингибиторов фибринолиза.

 При ускорении свертывания крови и одновременном торможении фибринолиза создаются благоприятные условия для развития тром­бозов, эмболии и ДВС-синдрома.

 Наряду с ферментативным фибринолизом, по мне­нию профессора Б. А. Кудряшова, существует так называемый неферментативный фибринолиз, который обусловлен ком­плексными соединениями естественного антикоагулянта гепарина с ферментами и гормонами. Неферментативный фибринолиз приводит к расщеплению нестабилизированного фибрина, очищая сосудистое русло от фибрин-мономеров и фибрина s.

132. Группы крови по системе АВ0. Методика определения групповой принадлежности крови. Принципы переливания крови.

Учение о группах крови возникло из потребностей клинической медицины. Переливая кровь от животных человеку или от человека человеку, врачи нередко наблюдали тяжелейшие осложнения, иногда заканчивавшиеся гибелью реципиента (лицо, которому переливают кровь).

С открытием венским врачом К. Ландштейнером (1901) групп крови стало понятно, почему в одних случаях трансфузии крови проходят успешно, а в других заканчиваются трагически для боль­ного. К. Ландштейнер впервые обнаружил, что плазма, или сыво­ротка, одних людей способна агглютинировать (склеивать) эритро­циты других людей. Это явление получило наименование изогемагглютинации. В основе ее лежит наличие в эритроцитах антигенов, названных агглютиногенами и обозначаемых буквами А и В, а в плазме — природных антител, или агглютининов, именуемых α и β. Агглютинация эритроцитов наблюдается лишь в том случае, если встречаются одноименные агглютиноген и агглютинин: А и α, В и β.


Установлено, что агглютинины, являясь природными антителами (AT), имеют два центра связывания, а потому одна молекула агг­лютинина способна образовать мостик между двумя эритроцитами. При этом каждый из эритроцитов может при участии агглютининов связаться с соседним, благодаря чему возникает конгломерат (агглютинат) эритроцитов.

В крови одного и того же человека не может быть одноименных агглютиногенов и агглютининов, так как в противном случае про­исходило бы массовое склеивание эритроцитов, что несовместимо с жизнью. Возможны только четыре комбинации, при которых не встречаются одноименные агглютиногены и агглютинины, или че­тыре группы крови: I — αβ, II — Aβ, III — Вα, IV — АВ. 

Кроме агглютининов, в плазме, или сыворотке, крови содержатся гемолизины: их также два вида и они обозначаются, как и агглю­тинины, буквами α и β. При встрече одноименных агглютиногена и гемолизина наступает гемолиз эритроцитов. Действие гемолизинов проявляется при температуре 37—40 οС. Вот почему при перелива­нии несовместимой крови у человека уже через 30—40 с. наступает гемолиз эритроцитов. При комнатной температуре, если встречаются одноименные агглютиногены и агглютинины, происходит агглюти­нация, но не наблюдается гемолиз.

В плазме людей с II, III, IV группами крови имеются антиагглютиногены, покинувшие эритроцит и ткани. Обозначаются они, как и агглютиногены, буквами А и В

Для решения вопроса о совместимости групп крови пользуются следующим правилом: среда реципиента должна быть пригодна для жизни эритроцитов донора (человек, который отдает кровь). Такой средой является плазма, следовательно, у реципиента должны учи­тываться агглютинины и гемолизины, находящиеся в плазме, а у донора — агглютиногены, содержащиеся в эритроцитах. Для реше­ния вопроса о совместимости групп крови смешивают исследуемую кровь с сывороткой, полученной от людей с различными группами крови  

Следовательно, кровь I группы совместима со всеми другими группами крови, поэтому человек, имеющий I группу крови, на­зывается универсальным донором. С другой стороны, эритроциты IV группы крови не должны давать реакции агглютинации при смешивании с плазмой (сывороткой) людей с любой группой крови, поэтому люди с IV группой крови называются универсальными реципиентами.

Почему же при решении вопроса о совместимости не принимают в расчет агглютинины и гемолизины донора? Это объясняется тем, что агглютинины и гемолизины при переливании небольших доз крови (200—300 мл) разводятся в большом объеме плазмы (2500— 2800 мл) реципиента и связываются его антиагглютининами, а потому не должны представлять опасности для эритроцитов.


В повседневной практике для решения вопроса о группе пере­ливаемой крови пользуются иным правилом: переливаться должны одногруппная кровь и только по жизненным показаниям, когда человек потерял много крови. Лишь в случае отсутствия одногруппной крови с большой осторожностью можно перелить небольшое количество иногруппной совместимой крови. Объясняется это тем, что приблизительно у 10—20% людей имеется высокая концентрация очень активных агглютининов и гемолизинов, которые не могут быть связаны антиагглютининами даже в случае переливания не­большого количества иногруппной крови.

Концентрация агглютиногенов на поверхности мембраны эрит­роцитов чрезвычайно велика. Так, один эритроцит группы крови A1 содержит в среднем 900 000—1 700 000 антигенных детерминант, или рецепторов, к одноименным агглютининам. С увеличением порядкового номера агглютиногена число таких детерминант умень­шается. Эритроцит группы А2 имеет всего 250 000—260 000 анти­генных детерминант, что также объясняет меньшую активность этого агглютиногена.

В настоящее время система AB0 часто обозначается как АВН, а вместо терминов «агглютиногены» и «агглютинины» применяются термины «антигены» и «антитела» (например, АВН-антигены и АВН-антитела).

Определение групп крови.

Группы крови .Эритроцитарные антигены. Часть из более чем 300 антигенов мембраны эритроцитов человека объединена в 23 генетически контролируемые системы групп крови (ABO, Rh-Hr, Дафи, М, N, S, Леви, Диего). Система антигенов эритроцитов АВО содержит в сыворотке крови естественные анти-А и анти-В антитела. Генетический локус, контролирующий образование антигенов этой системы, расположен в длинном плече 9-й хромосомы и представлен генами Н, А, В и 0. Гены А, В, Н контролируют синтез ферментов, которые формируют особые моносахариды или антигены мембраны эритроцита — А, В и Н. Образование антигенов начинается с гена Н, который через контролируемый им энзим гликолизилтранферазу формирует из особого вещества-предшественника — церамидпентасахарида — антиген Н эритроцитов. Далее гены А и В через активность контролируемых ими энзимов формируют из Н-антигена, являющегося для них исходным материалом, антигены А или В. Ген «0» не контролирует трансферазу, и Н-антиген остается неизменным, формируя группу крови 0(I). Таким образом, на мембране эритроцитов человека присутствуют антигены А, В и Н. У 20 % людей антиген А имеет антигенные отличия (А1 и А2). Антитела против антигенов А, А1, А2 и В начинают формироваться после рождения человека иммунной системой в ответ на стимуляцию ее антигенами пищи и бактерий, поступающих, например, в организм с вдыхаемым воздухом. Максимум продукции анти-А и анти-В антител приходится на 8—10-летний возраст. При этом в плазме крови накапливается анти-А больше, чем анти-В. Антитела анти-А и анти-В называются изоантителами, или агглютининами, а соответствующие антигены мембраны — агглютиногенами.