Файл: 1. Современные представления о строении и функции мембран.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 10.04.2024
Просмотров: 259
Скачиваний: 0
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Естественные анти-А- и анти-В-антитела принадлежат к иммуноглобулинам класса М. Выработанные в процессе иммунизации А или В антигеном анти-А- и анти-В-антитела являются иммунными и относятся к иммуноглобулинам класса G. Иммуноглобулины склеивают эритроциты (явление агглютинации) и вызывают их гемолиз. При несовместимости группы крови донора (т. е. человека, у которого берут кровь для переливания) и реципиента (т. е. человека, которому переливают кровь) переливание крови вызывает гемоконфликт, связанный с агглютинацией и гемолизом эритроцитов, заканчивающийся гибелью реципиента. Для исключения гемокон-фликтов человеку переливают лишь одногруппную кровь. Для определения группы крови по системе АВО смешивают антитела анти- А и анти- В с исследуемыми эритроцитами и по наличию или отсутствию агглютинации эритроцитов определяют группу крови (табл. 7.4). Rh-Hr антигены эритроцитов. Rh-антигены представлены на мембране эритроцитов тремя связанными участками: антигенами С (rh') или с (hr"), Е (rh") или е (hr") и D (Rh,,) или d. Из этих антигенов сильным является D, он способен иммунизировать человека, у которого антиген D отсутствует. Люди, имеющие D-антиген, называются «резус-положительными» (Rh+), среди европейцев их 85 %, а не имеющие его — «резус-отрицательными» (Rh-) (15 %). У некоторых народов, например эвенков, отмечается 100 % Rh+ принадлежность.
133. Резус фактор.
Тип крови определяется двумя важными факторами: номером группы (I, II, III или IV) и резус-фактором. Если ваша кровь содержит резус-фактор D-антиген, то ваша кровь — резус-положительная, если его недостает, то вы резус-отрицательны.
Если человек с отрицательным резусом получает резус-положительную кровь, то он становится сенсибилизированным, и его организм начнет производить антитела, которые будут разрушать чужеродные клетки крови. Этот факт может иметь значение, если у ребенка резус- отрицательная мать и резус-положительный отец, сам ребенок при этом может иметь положительный резус-фактор. Во время пункции плодного пузыря или отслойки плаценты возникает возможность попадания крови плода в кровообращение матери. Если это произойдет, то в крови матери начинают вырабатываться антитела для борьбы с клетками крови плода, имеющими положительный резус. Эти антитела будут атаковать и умерщвлять клетки крови с положительным резусом. Эта болезнь называется гемолитической болезнью новорожденных. Поскольку сенсибилизация не происходит до родов, первому ребенку ничего не угрожает, кроме случаев, если сенсибилизация у женщины имела место и лечение не проводилось. Если женщина не лечилась и снова забеременела резус-положительным ребенком, антитела проходят через плаценту к плоду и убивают красные клетки крови плода и это может привести даже к смерти.
Для профилактики возникновения гемолитической болезни новорожденного после рождения ребенка с положительным резус-фактором, также как и после выкидыша, аборта или после пункции плодного пузыря, делается инъекция иммуноглобулина. Это повторяется также на 28-й неделе беременности. Этот специальный иммуноглобулин действует подавляюще на особый иммунный ответ резус-отрицательного индивидуума на резус-положительные красные клетки крови. Поскольку у женщины не вырабатываются антитела, не возникнет влияния на последующие беременности, и женщина сможет в будущем родить здорового ребенка
134. Дыхание, его основные этапы.Биомеханика вдоха и выдоха. Давление в различных отделах дыхательной системы (внутриплевральное, внутриальвеолярное, транспульмональное). Дыхание — физиологическая функция, обеспечивающая газообмен (О2 и СО2) между окружающей средой и организмом в соответствии с его метаболическими потребностями.
Дыхание протекает в несколько стадий: 1) внешнее дыхание — обмен О2 и СО2 между внешней средой и кровью легочных капилляров. В свою очередь внешнее дыхание можно разделить на два процесса: а) газообмен между внешней средой и альвеолами легких, что обозначается как «легочная вентиляция»; б) газообмен между альвеолярным воздухом и кровью легочных капилляров; 2) транспорт О2 и СО2 кровью; 3) обмен О2 и СО2 между кровью и клетками организма; 4) тканевое дыхание.
Дыхание осуществляет перенос Ог из атмосферного воздуха к клеткам организма, а в обратном направлении производит удаление СО2, который является важнейшим продуктом метаболизма клеток.
Биомеханика вдоха
Увеличение объема грудной полости при вдохе происходит в результате сокращения инспираторных мышц: диафрагмы и наружных межреберных. Основной дыхательной мышцей является диафрагма, которая находится в нижней трети грудной полости и разделяет грудную и брюшную полости. При сокращении диафрагмальной мышцы диафрагма движется вниз и смещает органы брюшной полости вниз и кпереди, увеличивая объем грудной полости преимущественно по вертикали.
Увеличению объема грудной полости при вдохе способствует сокращение наружных межреберных мышц, которые поднимают грудную клетку вверх, увеличивая объем грудной полости. Этот эффект сокращения наружных межреберных мышц обусловлен особенностями прикрепления мышечных волокон к ребрам – волокна идут сверху вниз и сзади кпереди. При подобном направлении мышечных волокон наружных межреберных мышц их сокращение поворачивает каждое ребро вокруг оси, проходящей через точки сочленения головки ребра с телом и поперечным отростком позвонка. В результате это движения каждая нижележащая реберная дуга поднимается вверх больше, чем опускается вышерасположенная. Одновременное движение вверх всех реберных дуг приводит к тому, что грудина поднимается вверх и кпереди, а объем грудной клетки увеличивается в сагиттальной и фронтальной плоскостях. Сокращение наружных межреберных мышц не только увеличивает объем грудной полости, но и препятствует опусканию грудной клетки вниз.
При глубоком дыхании в биомеханизме вдоха, как правило, участвует вспомогательная дыхательная мускулатура – грудино-ключично-сосцевидные и передние лестничные мышцы, и их сокращение дополнительно увеличивает объем грудной клетки.
В частности, лестничные мышцы поднимают верхние два ребра, а грудино-ключично-сосцевидные – поднимают грудину. Вдох является активным процессом и требует расхода энергии при сокращении инспираторных мышц, которая затрачивается на преодоление эластического сопротивления легко растяжимой легочной ткани, аэродинамического сопротивления дыхательных путей потоку воздуха, а также на повышение внутриабдоминального давления и возникающего при этом смещения органов брюшной полости книзу.
Биомеханика выдоха
Выдох в покое у человека осуществляется пассивно под действием эластической тяги легких, которая возвращает объем легких к исходной величине. Тем не менее при глубоком дыхании, а также при кашле и чиханье, выдох может быть активным, и уменьшение объема грудной полости происходит за счет сокращения внутренних межреберных мышц и мышц живота. Мышечные волокна внутренних межреберных мышц идут относительно точек их прикрепления к ребрам снизу вверх и сзади кпереди. При их сокращении ребра поворачиваются вокруг оси, проходящей через точки их сочленения с позвонком, и каждая вышерасположенная реберная дуга опускается вниз больше, чем нижерасположенная поднимается вверх. В результате все реберные дуги вместе с грудиной опускаются вниз, уменьшая объем грудной полости и сагиттальной и фронтальной плоскостях. При глубоком дыхании человека сокращение мышц живота в фазу выдоха увеличивает давление в брюшной полости, что способствует смещению купола диафрагмы вверх и уменьшает объем грудной полости в вертикальном положении.
Внутриплевральное давление, или давление в герметично замкнутой плевральной полости между висцеральными и париетальными листками плевры, в норме является отрицательным относительно атмосферного. При открытых верхних дыхательных путях давление во всех отделах легких равно атмосферному. Перенос атмосферного воздуха в легкие происходит при появлении разницы давлений между внешней средой и альвеолами легких. При каждом вдохе объем легких увеличивается, давление заключенного в них воздуха, или внутрилегочное давление, становится ниже атмосферного, и воздух засасывается в легкие.
При выдохе объем легких уменьшается, внутрилегочное давление повышается и воздух выталкивается из легких в атмосферу. Внутриплевральное давление обусловлено эластической тягой легких или стремлением легких уменьшить свой объем. При обычном спокойном дыхании Внутриплевральное давление ниже атмосферного: в инспирацию - на 6-8 см вод. ст., а в экспирацию - на 4 - 5 см вод. ст. Внутриплевральное давление в апикальных частях легких ниже, чем в прилегающих к диафрагме базальных отделах легких. В положении стоя этот градиент практически линейный и не изменяется в процессе дыхания.
Внутриальвеолярное давление
На вдохе внутриальвеолярное давление уменьшается. Достаточно - 1мм.вд.ст, чтобы воздух поступал в альвеолы. Во время выдоха это давление становится положительным относительно атмосферного, и воздух выходит из легких.
Транспульмональное давление – давление через стенку легких. Определяется как разница внутрипульмонального и внутриплеврального давления. Эта величина удерживает легкие относительно грудной клетки в растянутом состоянии.
135. Легочные объемы и емкости, методы их измерения (спирометрия, спирография, пневмотахография, пикфлуометрия, интегральная плетизмография)
В физиологии дыхания принятая единая номенклатура легочных объемов у человека, которые заполняют легкие при спокойном и глубоком дыхании в фазу вдоха и выдоха дыхательного цикла. Легочный объем, который вдыхается или выдыхается человеком при спокойном дыхании, называется дыхательным объемом. Его величина при спокойном дыхании составляет в среднем 500 мл. Максимальное количество воздуха, которое может вдохнуть человек сверх дыхательного объема, называется резервным объемом вдоха (в среднем 3000мл). Максимальное количество, воздуха которое может выдохнуть человек после спокойного выдоха, называется резервным объемом выдоха (в среднем 1100 мл). Наконец, количество воздуха, которое остается в легких после максимального выдоха, называется остаточным объемом, его величина равна 1200 мл.
Сумма величин двух легочных объемов и более называется легочной емкостью. Объем воздуха в легких человека характеризуется инспираторной емкостью легких, жизненной емкостью легких и функциональной остаточной емкостью легких. Инспираторная емкость легких (3500мл) представляет собой сумму дыхательного объема и резервного объема вдоха. Жизненная емкость легких (4600 мл) включает в себя дыхательный объем и резервные объемы вдоха и выдоха. Функциональная остаточная емкость легких (1600мл) представляет собой сумму резервного объема выдоха и остаточного объема легких. Сумма жизненной емкости легких и остаточного объема называется общей емкостью легких, величина которой у человека в среднем равна 5700мл.
При вдохе легкие человека за счет сокращения диафрагмы и наружных межреберных мышц начинают увеличивать свой объем с уровня функциональной остаточной емкости, и его величина при спокойном дыхании составляет дыхательный объем, а при глубоком дыхании – достигает различных величин резервного объема вдоха. При выдохе объем легких вновь возвращается к исходному уровню функциональной остаточной емкости, что имеет место при глубоком дыхании, а также при кашле и чиханье, то выдох осуществляется за счет сокращения мышц брюшной стенки. В этом случае величина внутриплеврального давления, как правило, становится выше атмосферного давления, что обуславливает наибольшую скорость потока воздуха в дыхательных путях.