Файл: Конспект лекций для магистрантов специальности 6М070200 Автоматизация и управление.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 27.04.2024

Просмотров: 334

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Цели и задачи дисциплины

Выписка из учебного плана

Модуль 1. Моделирование и идентификация статических характеристик объектов

Тема 1. Введение

Лекция 1 Вводная

Тема 2 Математические модели объектов идентификации

Лекция 2 Основнные понятия и терминология дисциплины

Лекция 3 Постановка задачи моделирования и идентификации статических характеристик объектов

Лекция 4 Основные характеристики случайных величин

Лекция 5 Оценка статистических показателей(часть1)

Лекция 6 Оценка статистических показателей(часть2)

Лекция 7 Статические модели в форме управления регрессии и методы их определения (часть 1)

Лекция 8 Статические модели в форме управления регрессии и методы их определения (часть 2)

Лекция 9 Статические модели в форме управления регрессии и методы их определения (часть 3)

Лекция 10 Статические модели в форме управления регрессии и методы их определения (часть 4)

Лекция 11 Методы планирования эксперимента (часть 1)

Лекция 12 Методы планирования эксперимента (часть 2)

Лекция 13 Методы планирования эксперимента (часть 3)

Лекция 14 Методы планирования эксперимента (часть 4)

Лекция 15 Методы планирования эксперимента (часть 5)

Модуль 2. Моделирование и идентификация динамических характеристик объектов

Тема3 Моделирование и идентификация динамических характеристик объектов

Лекция 16 Множество моделей, структуры моделей (часть 1)

Лекция 17 Множество моделей, структуры моделей (часть 2)

Лекция 18 Идентификация динамических систем

Лекция 19 Определение частотных характеристик.

Лекция 20 Определение переходных характеристик

Тема 4 Параметрическая статистическая идентификация

Лекция 21 Основные характеристики времянных рядов

Лекция 22 Параметрическая статистическая идентификация (часть 1)

Лекция 23 Параметрическая статистическая идентификация (часть 2)

Лекция 24 Параметрическая статистическая идентификация (часть 3)

Лекция 25 Параметрическая статистическая идентификация (часть 4)

Лекция 26 Параметрическая статистическая идентификация (часть 5)

Лекция 27 Параметрическая статистическая идентификация (часть 6)

Тема 4 Специальное программное обеспечение задач моделирования

Лекция 28 Специальное программное обеспечение задач моделирования (часть 1)

Лекция 29 Сециальное программное обеспечение задач моделирования (часть 2)

Лекция 30 Сециальное программное обеспечение задач моделирования (часть 2)

Приложение А. Условные обозначения

Приложение Б. Глоссарий. Основная терминология

Методическое обеспечение дисциплины и ТСО.

Учебники, учебные пособия, методические указания, конспекты лекций, справочники и др.

Основная литература

Дополнительная литература

Плакаты, слайды, видео- и телефильмы, программы для ЭВМ (номера, полные названия)

Программы для ЭВМ

Плакаты (имеется аналогичный раздаточный материал и слайды)

Пособия в электронном виде, имеющиеся на кафедре



В другом способе построения моделей непосредственно используются экспериментальные данные. В этом случае ведётся регистрация входных и выходных сигналов системы, и модель формируется в результате обработки соответствующих данных. Этот способ называется идентификацией.
Идентификация на основе методов оценивания

Байесовские оценки. Теорема выражается т. н. формулой Байеса:

(22.1)

где

P(A) — априорная вероятность гипотезы A (смысл такой терминологии см. ниже);

P(A | B) — вероятность гипотезы A при наступлении события B (апостериорная вероятность);

P(B | A) — вероятность наступления события B при истинности гипотезы A;

P(B) — вероятность наступления события B.

Вывод формулы. Формула элементарно выводится из определения условной вероятности:



Физический смысл и терминология. Формула Байеса позволяет «переставить причину и следствие»: по известному факту события вычислить вероятность того, что оно было вызвано данной причиной. События, отражающие действие «причин», в данном случае обычно называют «гипотезами», так как они — предполагаемые события, повлекшие данное. Также, безусловную вероятность справедливости «гипотезы» называют «априорной» (насколько вероятна причина вообще), а условную при произошедшем событии — «апостериорной» (насколько вероятна причина оказалась с учетом полученных данных о событии).

Важным следствием формулы Байеса является формула полной вероятности события, зависящего от нескольких несовместных гипотез (и только от них!).

— вероятность наступления события B, зависящего от ряда гипотез Ai, если известны степени достоверности этих гипотез (например, измерены экспериментально);

Вывод теоремы. Если событие зависит только от причин Ai, то если оно произошло, значит, обязательно произошла какая-то из причин, т.е.



По формуле Байеса




Переносом P(B) вправо получаем искомое выражение.

Пример использования метода Байеса для фильтрации спама в электронной почте. Метод, основанный на теореме Байеса, нашел успешное применение в фильтрации спама. При обучении фильтра для каждого встреченного в письмах слова высчитывается и сохраняется его «вес» — вероятность того, что письмо с этим словом — спам (в простейшем случае — по классическому определению вероятности: «появлений в спаме / появлений всего»).

При проверке вновь пришедшего письма вычисляется вероятность того, что оно — спам, по указанной выше формуле для множества гипотез. В данном случае «гипотезы» — это слова, и для каждого слова «достоверность гипотезы» — % этого слова в письме, а «зависимость события от гипотезы» P(B | Ai) — вычисленный ранее «вес» слова. То есть «вес» письма в данном случае — не что иное, как усредненный «вес» всех его слов. Отнесение письма к «спаму» или «не-спаму» производится по тому, превышает ли его «вес» некую планку, заданную пользователем (обычно берут 60-80 %). После принятия решения по письму в базе данных обновляются «веса» для вошедших в него слов.

Данный метод прост (алгоритмы элементарны), удобен (позволяет обходиться без «черных списков» и подобных искусственных приемов), эффективен (после обучения на достаточно большой выборке отсекает до 95—97 % спама, и в случае любых ошибок его можно дообучать). В общем, есть все показания для его повсеместного использования, что и имеет место на практике — на его основе построены практически все современные спам-фильтры.

Впрочем, у метода есть и принципиальный недостаток: он базируется на предположении, что одни слова чаще встречаются в спаме, а другие — в обычных письмах, и неэффективен, если данное предположение неверно. Впрочем, как показывает практика, такой спам даже человек не в состоянии определить «на глаз» — только прочтя письмо и поняв его смысл.

Еще один, не принципиальный, недостаток, связанный с реализацией — метод работает только с текстом. Зная об этом ограничении, спамеры стали вкладывать рекламную информацию в картинку, текст же в письме либо отсутствует, либо не несет смысла. Против этого приходится пользоваться либо средствами распознавания текста («дорогая» процедура, применяется только при крайней необходимости), либо старыми методами фильтрации — «черные списки» и регулярные выражения (так как такие письма часто имеют стереотипную форму).


Общие задачи статистической идентификации. В практике моделирования систем наиболее часто приходится иметь дело с объектами, которые в процессе своего функционирования содержат элементы стохастичности или подвергаются стохастическим воздействиям вне­шней среды. Поэтому основным методом получения результатов с помощью имитационных моделей таких стохастических систем является метод стати­стического моделирования на ЭВМ, использующий в качестве теоретической базы предельные теоремы теории вероятностей. Возможность получения пользователем модели результатов статистического моделирования сложных систем в условиях ограниченности машинных ресурсов существенно зависит от эффективности процедур генерации псевдослучайных последовательностей на ЭВМ, положенных в основу имитации воздействий на элементы моде­лируемой системы.

Общая характеристика метода статистического моделирования. На этапе исследования и проектирования систем при построении и реализации машинных моделей (аналитических и имитационных) широко используется метод статистических испытаний (Монте-Кар­ло), который базируется на использовании случайных чисел, т. е. возможных значений некоторой случайной величины с заданным распределением вероятностей. Статистическое моделирование пред­ставляет собой метод получения с помощью ЭВМ статистических данных о процессах, происходящих в моделируемой системе. Для получения представляющих интерес оценок характеристик моделируемой системы S с учетом воздействий внешней сре­ды Е статистические данные обрабатываются и классифицируют­ся с использованием методов математической статистики.

Сущность метода статистического моделирования. Таким образом, сущность метода статистического моделирования сводится к построению для процесса функционирования исследуемой систе­мы S некоторого моделирующего алгоритма, имитирующего пове­дение и взаимодействие элементов системы с учетом случайных входных воздействий и воздействий внешней среды Е, и реализации этого алгоритма с использованием программно-технических средств ЭВМ.


Различают две области применения метода статистического мо­делирования:

1) для изучения стохастических систем;

2) для решения детерминированных задач.

Основной идеей, которая используется для решения детерминированных задач методом статистического моделирования, является замена детерминированной задачи эквива­лентной схемой некоторой стохастической системы, выходные хара­ктеристики последней совпадают с результатом решения детерми­нированной задачи. Естественно, что при такой замене вместо точного решения задачи получается приближенное решение и погре­шность уменьшается с увеличением числа испытаний (реализации моделирующего алгоритма) N.

В результате статистического моделирования системы S получа­ется серия частных значений искомых величин или функций, стати­стическая обработка которых позволяет получить сведения о пове­дении реального объекта или процесса в произвольные моменты времени. Если количество реализации N достаточно велико, то полученные результаты моделирования системы приобретают статистическую устойчивость и с достаточной точностью могут быть приняты в качестве оценок искомых характеристик процесса функ­ционирования системы S.

Теоретической основой метода статистического моделирования систем на ЭВМ являются предельные теоремы теории вероятностей. Множества случайных явлений (событий, величин) подчиняются определенным закономерностям, позволя­ющим не только прогнозировать их поведение, но и количественно оценить некото­рые средние их характеристики, проявляющие определенную устойчивость. Харак­терные закономерности наблюдаются также в распределениях случайных величин, которые образуются при сложении множества воздействий. Выражением этих зако­номерностей и устойчивости средних показателей являются так называемые предель­ные теоремы теории вероятностей, часть из которых приводится ниже в пригодной для практического использования при статистическом моделировании формулиров­ке. Принципиальное значение предельных теорем состоит в том, что они гарантиру­ют высокое качество статистических оценок при весьма большом числе испытаний (реализации) N. Практически приемлемые при статистическом моделировании коли­чественные оценки характеристик систем часто могут быть получены уже при сравнительно небольших (при использовании ЭВМ) N.

Основная литература


  1. Ахназарова С.Л., Кафаров В.В. Методы оптимизации эксперимента в химической технологии: Учебное пособие для вузов. - 2-е изд., перераб. и дополненное. -М.: Высшая школа, 1985. -327с.

  2. Исмаилов С.У. Современные методы идентификации объектов и систем управления. Методические указания к выполнению лабораторных работ для магистрантов спец. 6М0702. Шымкент, ЮКГУ, 2010 г., -78 с.

Дополнительная литература

  1. Практикум по автоматике и системам управления производственными процессами: учеб. пособие для вузов /под ред. И.М. Масленникова. -М.: Химия, 1986. -336с.

  2. Гроп Д. Методы идентификации систем. - М.: Мир, 1979