Файл: Ответы к экзаменационным вопросам по предмету Основы энергетики.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 02.05.2024
Просмотров: 75
Скачиваний: 0
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
)/2. При теплопередаче через многослойную цилиндрическую стенку система равенств (2.48') должна быть заменена системой, учитывающей сопротивление теплопроводности всех слоёв: После сложения равенств (2.55) и решения относительноql , Вт/м, получим: Величина (2.56'') называется полным термическим сопротивлением многослойной цилиндрической стенки и измеряется в м×К/Вт. Из уравнения (2.55) следует, что При задании граничных условий первого рода их можно рассматривать как предельный случай граничных условий третьего рода, когда коэффициенты теплоотдачи на поверхностях 1и 2 устремляются к бесконечности, в силу чего tF1 и tF2 становятся равными tc1 и tc(n+1). При этих условиях уравнение (2.56) принимает вид: (2.59) - выражение для расчета температуры на границах между слоями.
10. Теплопроводность при нестационарном режиме
Процессы передачи теплоты, в которых температурное поле и поле теплового потока изменяются во времени, называются нестационарными.
Нестационарные тепловые процессы в технике и природе встречаются практически чаще, чем стационарные. Нагрев или охлаждение приборов и машин при пуске, останове или изменении режима; конструктивных элементов зданий и других сооружений при изменении наружной температуры; термическая обработка продуктов и изделий; работа регенеративных теплообменных аппаратов – все это примеры нестационарных тепловых процессов.
Длительность процессов нестационарного конвективного теплообмена и излучения сравнительно мала и не имеет существенного влияния на формирование температурных полей тел в нестационарном режиме, поэтому эти процессы пока мало изучены – их нестационарностью обычно пренебрегают. Процессы же теплопроводности, наоборот, оказывают решающее влияние на формирование температурных полей при нестационарном тепловом состоянии отдельных тел и систем.
Процессы нестационарной теплопроводности можно разделить на две группы: а) нестационарные процессы, связанные с нарушением теплового равновесия, когда с течением времени система стремится к некоторому новому равновесному состоянию; б) нестационарные процессы, связанные с периодическим изменением теплового состояния тела (периодические изменения температуры окружающей среды или мощности тепловых источников и т. п.).
В большинстве задач нестационарной теплопроводности требуется найти температуры в определенных точках тела в заданный момент времени t от начала процесса. Возможна и обратная задача: найти длительность процесса, в результате которого температура в данной точке тела примет определенное, наперед заданное значение. В некоторых задачах бывает необходимо найти тепловой поток в определенной точке в заданный момент времени или полное количество теплоты, отданной (или полученной) телом в течение заданного промежутка времени.
Все перечисленные задачи сводятся к нахождению температуры рассматриваемого тела как функции времени и координат t = f(t, x, у, z).
Эту зависимость можно найти, если проинтегрировать дифференциальное уравнение теплопроводности при заданных краевых условиях.
Для некоторых конкретных задач теплопроводности дифференциальное уравнение может быть упрощено: в случае передачи теплоты в одном направлении задача становится одномерной; при распространении теплоты в двух направлениях задача является двухмерной. Для тел цилиндрической формы удобно перейти к цилиндрическим координатам, а для тел шаровой формы – к сферическим.
Дифференциальное уравнение и краевые условия полностью формулируют задачу. Дальнейшее аналитическое ее решение сводится к использованию методов математической физики. Основные из них: метод разделения переменных, методы интегральных преобразований (например, Лапласа), метод мгновенных точечных источников. Кроме аналитических применяют и приближенные методы.
Будем рассматривать задачу теплопроводности при постоянных значениях теплофизических характеристик тела (l, с,r) с граничными условиями третьего рода, так как они наиболее часто встречаются на практике. Задача формулируется следующим образом. Плоская неограниченная пластина толщиной d, имеющая во всех точках одинаковую начальную температуру tнч, в момент времени t = 0 помещается в среду, температура которой tж < tнч. Температура среды во время охлаждения поддерживается постоянной. Охлаждение пластины происходит через обе ее поверхности с одинаковой интенсивностью путем теплоотдачи, т.е., тепловой поток на поверхности подчиняется закону Ньютона-Рихмана
q = a(tc – tж). Коэффициент теплоотдачи a известен и не меняется в течение всего процесса. Известен также материал, из которого выполнена пластина.
Требуется найти температурное поле пластины в произвольный момент времени t > 0. Математически задачу можно сформулировать следующим образом. Дифференциальное уравнение теплопроводности для одномерной задачи без внутренних источников теплоты
,
где х может изменяться в пределах 0 £ х £ d/2: так как охлаждение пластины происходит симметрично, целесообразно поместить начало координат в середину пластины и рассматривать процесс только в одной ее половине (см. рисунок). Краевые условия:
1) начальное условие при t = 0 и 0 £ х £ d/2 t = tнч;
2) граничные условия: а) при х = 0и t > 0 (дt/дx)0 = 0, т. к. при симметричном охлаждении в середине пластины в любой момент времени температура будет максимальной; б) при х = l и t > 0 -l(дt/дx)c = a(tc – tж).
Последнее выражение записано на основании равенства тепловых потоков на поверхности пластины: подходящего к поверхности из внутренних областей тела путем теплопроводности и отводимого от поверхности в процессе теплоотдачи.
Решение задачи в общем виде можно представить как функцию независимых переменных х и t и параметров процесса а,l, a, l, tж, tнч:
t = f(х,t, а,l, a, l, tж, tнч).
Следуя методу подобия, приведем условия задачи к безразмерной форме; это значительно сокращает число переменных, придает полученному решению обобщенность, и упрощает анализ решения.
Для этого произведем сначала замену искомой величины t так называемой избыточной температурой J = t – tж.
Так как dJ = dt,то запись дифференциального уравнения и граничных условий от такой замены не изменится:
;
при t = 0 и 0 £ х £ l J = Jнч где Jнч = tнч – tж; при х = 0, t > 0 (дJ/дx)0 = 0; при х = l и t > 0 (дJ/дx)c
= -(a/l)Jс, где Jс = tс – tж.
Приведем уравнение и граничные условия к безразмерному виду. Для этого еще раз произведем замену переменных: вместо избыточной температуры введем безразмерную избыточную температуру Q = J/Jнч.Вместо координаты х введем безразмерную координату Х = х/l.Такая замена равносильна тому, что в качестве масштаба для измерения температуры используется величина Jнч, а в качестве масштаба длины – величина l. Для сохранения равенств исходные уравнения в соответствующих местах необходимо умножить на масштабы температуры и длины. Тогда дифференциальное уравнение будет иметь вид:
, или после сокращения и преобразования .
В такой форме дифференциальное уравнение безразмерно: величина l2/а имеет размерность времени и потому комплекс аt/l2безразмерен. Этот комплекс обозначается символом Fo и называется критерием Фурье:
Fo = at/l2.
Критерий Фурье можно трактовать как безразмерное время.
Окончательно дифференциальное уравнение теплопроводности в безразмерной записи получается в следующем виде:
.
Начальное условие: при Fo = 0, Qнч = 1;
граничные условия: при Х = 0 (дQ/дХ)0 = 0; при X = l (дQ/дХ)с = Bi×Qc,
где Qс = Jс/Jнч – безразмерная температура поверхности стенки; Bi = al/l – критерий Био.
Физический смысл критерия Био в том, что его величина характеризует соотношение интенсивностей отвода теплоты в процессе теплоотдачи и подвода теплоты из внутренних слоев тела к поверхности в результате теплопроводности.
Теперь искомая функция будет иметь вид Q = f(Fo,Bi, X).
Применяя метод разделения переменных решение дифференциального уравнения будет иметь вид
, (1)
где – коэффициенты уравнения;
mп – корни характеристического уравнения m/Bi = ctgm.
Значения mп и Ап приводятся в справочниках.
Результирующее выражение температурной функции, в форме произведения функции времени exp(-m2Fo) на некоторую функцию от координаты справедливо не только для пластины, но и для других тел, в которых распространение теплоты происходит в одном направлении, как, например, в бесконечно длинном цилиндре или шаре. Различаются результирующие выражения видом функции координаты: вместо cos – для пластины, для цилиндра появляется функция Бесселя, а для шара – гиперболическая. Для классических тел получены аналитические решения задач нестационарной теплопроводности.
В соответствии с формой результирующих уравнений (1) порядок решения задачи нестационарной теплопроводности для тела классической формы следующий:
1. На основании исходных данных вычисляют безразмерную координату Х и критерии Bi и Fo. Здесь характерный размер тела: для пластины при симметричном охлаждении l = d/2,при одностороннем охлаждении l = d;для бесконечно длинного цилиндра и шара l = R,где R – радиус.
2. По величине критерия Bi в специальных таблицах находят значения mnи Апдля нескольких значений п.В обычных инженерных расчетах достаточно учитывать два-четыре члена суммы в формуле (1).
3. По формуле (1) или аналогичной ей для тел другой формы вычисляют значение безразмерной температуры Q в данной точке в заданный момент времени. Из Q определяют искомую температуру t = f(t, x).
Анализ решения (1) позволяет выявить влияние величины числа Bi на нестационарную теплопроводность. Рассмотрим два предельных случая: Bi ® ¥ и Bi ® 0.
Первый предельный случай:Bi ® ¥ (практически Bi >100). Для тела конечных размеров (l – конкретная конечная величина) этот случай соответствует условию a/l ® ¥, т. е. большим значениям коэффициента теплоотдачи a и сравнительно малым значениям коэффициента теплопроводности l.В этом случае сразу после начала процесса температура поверхности тела принимает и в дальнейшем сохраняет постоянное значение tc = tж = const. Следовательно, интенсивность процесса охлаждения (нагрева) определяется внутренним процессом теплопроводности в теле и зависит только от физических свойств и размеров тела.
При этом общее решение (1) упрощается: из числа определяющих критериев выпадает критерий Bi. Так, для точек, расположенных в средней плоскости пластины (при
10. Теплопроводность при нестационарном режиме
Процессы передачи теплоты, в которых температурное поле и поле теплового потока изменяются во времени, называются нестационарными.
Нестационарные тепловые процессы в технике и природе встречаются практически чаще, чем стационарные. Нагрев или охлаждение приборов и машин при пуске, останове или изменении режима; конструктивных элементов зданий и других сооружений при изменении наружной температуры; термическая обработка продуктов и изделий; работа регенеративных теплообменных аппаратов – все это примеры нестационарных тепловых процессов.
Длительность процессов нестационарного конвективного теплообмена и излучения сравнительно мала и не имеет существенного влияния на формирование температурных полей тел в нестационарном режиме, поэтому эти процессы пока мало изучены – их нестационарностью обычно пренебрегают. Процессы же теплопроводности, наоборот, оказывают решающее влияние на формирование температурных полей при нестационарном тепловом состоянии отдельных тел и систем.
Процессы нестационарной теплопроводности можно разделить на две группы: а) нестационарные процессы, связанные с нарушением теплового равновесия, когда с течением времени система стремится к некоторому новому равновесному состоянию; б) нестационарные процессы, связанные с периодическим изменением теплового состояния тела (периодические изменения температуры окружающей среды или мощности тепловых источников и т. п.).
В большинстве задач нестационарной теплопроводности требуется найти температуры в определенных точках тела в заданный момент времени t от начала процесса. Возможна и обратная задача: найти длительность процесса, в результате которого температура в данной точке тела примет определенное, наперед заданное значение. В некоторых задачах бывает необходимо найти тепловой поток в определенной точке в заданный момент времени или полное количество теплоты, отданной (или полученной) телом в течение заданного промежутка времени.
Все перечисленные задачи сводятся к нахождению температуры рассматриваемого тела как функции времени и координат t = f(t, x, у, z).
Эту зависимость можно найти, если проинтегрировать дифференциальное уравнение теплопроводности при заданных краевых условиях.
Для некоторых конкретных задач теплопроводности дифференциальное уравнение может быть упрощено: в случае передачи теплоты в одном направлении задача становится одномерной; при распространении теплоты в двух направлениях задача является двухмерной. Для тел цилиндрической формы удобно перейти к цилиндрическим координатам, а для тел шаровой формы – к сферическим.
Дифференциальное уравнение и краевые условия полностью формулируют задачу. Дальнейшее аналитическое ее решение сводится к использованию методов математической физики. Основные из них: метод разделения переменных, методы интегральных преобразований (например, Лапласа), метод мгновенных точечных источников. Кроме аналитических применяют и приближенные методы.
Будем рассматривать задачу теплопроводности при постоянных значениях теплофизических характеристик тела (l, с,r) с граничными условиями третьего рода, так как они наиболее часто встречаются на практике. Задача формулируется следующим образом. Плоская неограниченная пластина толщиной d, имеющая во всех точках одинаковую начальную температуру tнч, в момент времени t = 0 помещается в среду, температура которой tж < tнч. Температура среды во время охлаждения поддерживается постоянной. Охлаждение пластины происходит через обе ее поверхности с одинаковой интенсивностью путем теплоотдачи, т.е., тепловой поток на поверхности подчиняется закону Ньютона-Рихмана
q = a(tc – tж). Коэффициент теплоотдачи a известен и не меняется в течение всего процесса. Известен также материал, из которого выполнена пластина.
Требуется найти температурное поле пластины в произвольный момент времени t > 0. Математически задачу можно сформулировать следующим образом. Дифференциальное уравнение теплопроводности для одномерной задачи без внутренних источников теплоты
,
где х может изменяться в пределах 0 £ х £ d/2: так как охлаждение пластины происходит симметрично, целесообразно поместить начало координат в середину пластины и рассматривать процесс только в одной ее половине (см. рисунок). Краевые условия:
1) начальное условие при t = 0 и 0 £ х £ d/2 t = tнч;
2) граничные условия: а) при х = 0и t > 0 (дt/дx)0 = 0, т. к. при симметричном охлаждении в середине пластины в любой момент времени температура будет максимальной; б) при х = l и t > 0 -l(дt/дx)c = a(tc – tж).
Последнее выражение записано на основании равенства тепловых потоков на поверхности пластины: подходящего к поверхности из внутренних областей тела путем теплопроводности и отводимого от поверхности в процессе теплоотдачи.
Решение задачи в общем виде можно представить как функцию независимых переменных х и t и параметров процесса а,l, a, l, tж, tнч:
t = f(х,t, а,l, a, l, tж, tнч).
Следуя методу подобия, приведем условия задачи к безразмерной форме; это значительно сокращает число переменных, придает полученному решению обобщенность, и упрощает анализ решения.
Для этого произведем сначала замену искомой величины t так называемой избыточной температурой J = t – tж.
Так как dJ = dt,то запись дифференциального уравнения и граничных условий от такой замены не изменится:
;
при t = 0 и 0 £ х £ l J = Jнч где Jнч = tнч – tж; при х = 0, t > 0 (дJ/дx)0 = 0; при х = l и t > 0 (дJ/дx)c
= -(a/l)Jс, где Jс = tс – tж.
Приведем уравнение и граничные условия к безразмерному виду. Для этого еще раз произведем замену переменных: вместо избыточной температуры введем безразмерную избыточную температуру Q = J/Jнч.Вместо координаты х введем безразмерную координату Х = х/l.Такая замена равносильна тому, что в качестве масштаба для измерения температуры используется величина Jнч, а в качестве масштаба длины – величина l. Для сохранения равенств исходные уравнения в соответствующих местах необходимо умножить на масштабы температуры и длины. Тогда дифференциальное уравнение будет иметь вид:
, или после сокращения и преобразования .
В такой форме дифференциальное уравнение безразмерно: величина l2/а имеет размерность времени и потому комплекс аt/l2безразмерен. Этот комплекс обозначается символом Fo и называется критерием Фурье:
Fo = at/l2.
Критерий Фурье можно трактовать как безразмерное время.
Окончательно дифференциальное уравнение теплопроводности в безразмерной записи получается в следующем виде:
.
Начальное условие: при Fo = 0, Qнч = 1;
граничные условия: при Х = 0 (дQ/дХ)0 = 0; при X = l (дQ/дХ)с = Bi×Qc,
где Qс = Jс/Jнч – безразмерная температура поверхности стенки; Bi = al/l – критерий Био.
Физический смысл критерия Био в том, что его величина характеризует соотношение интенсивностей отвода теплоты в процессе теплоотдачи и подвода теплоты из внутренних слоев тела к поверхности в результате теплопроводности.
Теперь искомая функция будет иметь вид Q = f(Fo,Bi, X).
Применяя метод разделения переменных решение дифференциального уравнения будет иметь вид
, (1)
где – коэффициенты уравнения;
mп – корни характеристического уравнения m/Bi = ctgm.
Значения mп и Ап приводятся в справочниках.
Результирующее выражение температурной функции, в форме произведения функции времени exp(-m2Fo) на некоторую функцию от координаты справедливо не только для пластины, но и для других тел, в которых распространение теплоты происходит в одном направлении, как, например, в бесконечно длинном цилиндре или шаре. Различаются результирующие выражения видом функции координаты: вместо cos – для пластины, для цилиндра появляется функция Бесселя, а для шара – гиперболическая. Для классических тел получены аналитические решения задач нестационарной теплопроводности.
В соответствии с формой результирующих уравнений (1) порядок решения задачи нестационарной теплопроводности для тела классической формы следующий:
1. На основании исходных данных вычисляют безразмерную координату Х и критерии Bi и Fo. Здесь характерный размер тела: для пластины при симметричном охлаждении l = d/2,при одностороннем охлаждении l = d;для бесконечно длинного цилиндра и шара l = R,где R – радиус.
2. По величине критерия Bi в специальных таблицах находят значения mnи Апдля нескольких значений п.В обычных инженерных расчетах достаточно учитывать два-четыре члена суммы в формуле (1).
3. По формуле (1) или аналогичной ей для тел другой формы вычисляют значение безразмерной температуры Q в данной точке в заданный момент времени. Из Q определяют искомую температуру t = f(t, x).
Анализ решения (1) позволяет выявить влияние величины числа Bi на нестационарную теплопроводность. Рассмотрим два предельных случая: Bi ® ¥ и Bi ® 0.
Первый предельный случай:Bi ® ¥ (практически Bi >100). Для тела конечных размеров (l – конкретная конечная величина) этот случай соответствует условию a/l ® ¥, т. е. большим значениям коэффициента теплоотдачи a и сравнительно малым значениям коэффициента теплопроводности l.В этом случае сразу после начала процесса температура поверхности тела принимает и в дальнейшем сохраняет постоянное значение tc = tж = const. Следовательно, интенсивность процесса охлаждения (нагрева) определяется внутренним процессом теплопроводности в теле и зависит только от физических свойств и размеров тела.
При этом общее решение (1) упрощается: из числа определяющих критериев выпадает критерий Bi. Так, для точек, расположенных в средней плоскости пластины (при