Файл: Опорный конспект.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 05.06.2024

Просмотров: 630

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Основні теоретичні поняття криптології План

1 Основні терміни, визначення та предмет науки «криптологія»

2 Криптоаналіз

Контрольні запитання

Список літератури

Шифри перестановки План

2 Таблиці для шифрування

2.1 Таблиці для шифрування. Проста перестановка

2.2 Таблиці для шифрування. Одиночна перестановка по ключу

2.3 Таблиці для шифрування. Подвійна перестановка

2.4 Застосування магічних квадратів

Список літератури

Шифри простої заміни План

1 Полібіанський квадрат

2 Система шифрування Цезаря

Криптоаналіз шифру Цезаря

3 Аффінна система підстановок Цезаря

4 Система Цезаря із ключовим словом

5 Таблиці Трисемуса

Криптографічний аналіз системи одноалфавітної заміни

6 Біграмний шифр Плейфейра

7 Криптосистема Хілла

8 Система омофонів

Додаток а

Список літератури

Шифри складної заміни План

1 Шифр Гронсфельда

Криптоаналіз шифру Гронсфельда

2 Система шифрування Віженера

3 Шифр “Подвійний квадрат Уітстона”

4 Одноразова система шифрування

5 Шифрування методом Вернама

6 Роторні машини

7 Шифрування методом гамірування

Список літератури

Блочні шифри План

1 Алгоритм des

1 Алгоритм des

Обчислення значень ключів

Аналіз ефективності алгоритму des

Список літератури

Асиметричні криптосистеми План

Керування ключами План

1 Алгоритм шифрування Діффі - Хеллмана

Керування ключами

1 Алгоритм шифрування Діффі - Хеллмана

Контрольні питання

Список літератури

Криптографічні протоколи План

Контрольні запитання

Список літератури

Ідентифікація та перевірка істинності План

Інформаційна безпека План

1.2 Основні складові інформаційної безпеки

1.3 Важливість і складність проблеми інформаційної безпеки

2 Розповсюдження об’єктно-орієнтованого підходу на інформаційну безпеку.

2.1 Про необхідність об’єктно-орієнтованого підходу до інформаційної безпеки

2.2 Основні поняття об’єктно-орієнтованого підходу

2.3 Вживання об’єктно-орієнтованого підходу до розгляду систем, що захищаються

2.4 Недоліки традиційного підходу до інформаційної безпеки з об’єктної точки зору

2.5 Основні визначення і критерії класифікації загроз

Контрольні запитання

Список літератури

Інформаційна безпека Найпоширеніші загрози План

1 Найпоширеніші загрози доступності

1 Найпоширеніші загрози доступності

2 Деякі приклади загроз доступності

3 Шкідливе програмне забезпечення

4 Основні загрози цілісності

5 Основні загрози конфіденційності

Список літератури

1.2 Механізми безпеки

1.3 Класи безпеки

2 Інформаційна безпека розподілених систем. Рекомендації X.800

2.1 Мережні сервіси безпеки

2.2 Мережні механізми безпеки

2.3 Адміністрування засобів безпеки

3 Стандарт iso/iec 15408 "Критерії оцінки безпеки інформаційних технологій"

3.1 Основні поняття

3.2 Функціональні вимоги

3.3 Вимоги довір’я безпеці

4 Гармонізовані критерії європейських країн

5 Інтерпретація "Оранжевої книги" для мережних конфігурацій

Список літератури

Інформаційна безпека Управління ризиками План

2 Підготовчі етапи управління ризиками

3 Основні етапи управління ризиками

Список літератури

Зловмиснику відомі лише значення та N. Якби він зміг розкласти число N на множники P й Q, то він довідався б "потаємний хід" – трійку чисел , обчислив значення функції Ейлера та визначив значення таємного ключа .

Однак, як було відзначено раніше, розкладання дуже великого числа N на множники не здійсненно обчислювальними методами (за умови, що довжини обраних Р и Q становлять не менше 100 десяткових знаків).

Процедури шифрування та розшифрування в криптосистемі RSA

Припустимо, що користувач A хоче передати користувачеві B повідомлення в зашифрованому вигляді, використовуючи криптосистему RSA. У такому випадку користувач A є в ролі відправника повідомлення, а користувач B – у ролі одержувача. Як відзначалося вище, криптосистему RSA повинен сформувати одержувач повідомлення, тобто користувач В. Розглянемо послідовність дій користувача В і користувача A.

  1. Користувач B вибирає два довільних великих простих числа P й Q.

  2. Користувач B обчислює значення модуля N згідно з (4.5).

  3. Користувач B обчислює функцію Ейлера й вибирає значення відкритого ключа з урахуванням виконання умов (4.6) і (4.7).

  4. Користувач B обчислює значення таємного ключа за формулою (4.8), використовуючи розширений алгоритм Евкліда.

  5. Користувач B пересилає незахищеним каналом користувачу A пару чисел (N, ).

Якщо користувач A має бажання передати користувачу B повідомлення М, він виконує такі кроки.

  1. Користувач A розбиває вихідний відкритий текст М на блоки, кожний з яких може бути поданий у вигляді числа ,.

  2. Користувач A шифрує текст, поданий у вигляді послідовності чисел М, за формулою


і відправляє користувачеві В криптограму

.

  1. Користувач B розшифровує прийняту криптограму , використовуючи таємний ключ , за формулою

.

У результаті буде отримана послідовність чисел , які являють собою вихідне повідомлення М. Щоб алгоритм RSA мав практичну цінність, необхідно мати можливість без істотних витрат генерувати великі прості числа, вміти оперативно обчислювати значення ключів та .

Наприклад, виконаємо шифрування повідомлення “Буду завтра”.

Нехай P=59, Q=61. Тоді , а . Виберемо як відкритий ключ довільне число з урахуванням виконання умов (4.6) і (4.7). Нехай . Згідно (4.8) таємний ключ .

Подамо повідомлення як послідовність цілих чисел у діапазоні від 1 до 32. Нехай A – 01, Б – 02, В – 03, ..., Я – 32.

Тоді повідомлення “Буду завтра” буде подано у вигляді

02 20 05 20 08 01 03 19 17 01.

Розбиваємо повідомлення на блоки по чотири цифри

0220 0520 0801 0319 1701

і кодуємо кожен блок:

У результаті одержимо шифр 0099 3273 2050 0719 1664.

Для відновлення вихідного тексту необхідно обчислити модульну експоненту, підвівши зашифроване значення в степінь за модулем N:


Таким чином, отримали відновлене вихідне повідомлення

0220 0520 0801 0319 1701.

Криптосистеми RSA реалізуються як апаратним, так і програмним шляхом.

Для апаратної реалізації операцій зашифрування та розшифрування RSA розроблені спеціальні процесори. Ці процесори, реалізовані на надвеликих інтегральних схемах, дозволяють виконувати операції RSA, пов’язані з піднесенням великих чисел у колосально великий ступінь за модулем N, за відносно короткий час.

Слід відзначити, що і апаратна, і програмна реалізації алгоритму RSA в декілька сот разів повільніші від реалізацій симетричних криптосистем. Мала швидкодія криптосистеми RSA обмежує сферу її застосування, але не перекреслює її цінність.

Безпека й швидкодія криптосистеми RSA

Безпека алгоритму RSA базується на труднощах розв’язання задачі факторизації великих чисел, що є добутками двох великих простих чисел. Дійсно, крипостійкість алгоритму RSA визначається тим, що після формування таємного ключа й відкритого ключа "стираються" значення простих чисел P й Q, і тоді винятково важко визначити таємний ключ за відкритим ключем , оскільки для цього необхідно розв’язати задачу знаходження дільників P та Q модуля N.

Розкладання величини N на прості множники Р і Q дозволяє обчислити функцію , а потім визначити таємне значення , використовуючи рівняння (4.8).

Іншим можливим способом криптоаналізу алгоритму RSA є безпосереднє обчислення або підбір значення функції . Якщо встановлено значення , то співмножники P й Q обчислюються досить просто. Справді, нехай

Знаючи (N), можна визначити х і потім y; знаючи х та y, можна визначити числа P і Q з таких співвідношень:

.


Однак ця атака не простіша задачі факторизації модуля N.

Задача факторизації є задачею, яка важко розв’язується для великих значень модуля N.

Спочатку автори алгоритму RSA пропонували для обчислення модуля N вибирати прості числа P й Q випадковим чином, по 50 десяткових розрядів кожне. Вважалося, що такі великі числа N дуже важко розкласти на прості множники. Один з авторів алгоритму RSA, Р.Райвест, вважав, що розкладання на прості множники числа з майже 130 десяткових цифр, наведеного в їхній публікації, зажадає більше 40 квадрильйонів років машинного часу. Однак цей прогноз не виправдався через порівняно швидкий прогрес обчислювальної потужності комп’ютерів, а також поліпшення алгоритмів факторизації.

Один з найбільш швидких алгоритмів, відомих у цей час, алгоритм NFS (Number Field Sieve) може виконати факторизацію великого числа N (із числом десяткових розрядів більше 120) за число кроків, оцінюваних величиною

У 1994 р. було факторизовано число з 129 десятковими цифрами. Це вдалося здійснити математикам А.Ленстра й М.Манассі за допомогою організації розподілених обчислень на 1600 комп’ютерах, об’єднаних мережею, протягом восьми місяців. На думку А.Ленстра та М.Манассі, їхня робота компрометує криптосистеми RSA і створює більшу погрозу їхнім подальшим застосуванням. Тепер розроблювачам криптоалгоритмів з відкритим ключем на базі RSA доводиться уникати застосування чисел довжиною менше 200 десяткових розрядів. Останні публікації пропонують застосовувати для цього числа довжиною не менше 300 десяткових розрядів.

4 Схема шифрування Поліга - Хеллмана

Схема шифрування Поліга - Хеллмана подібна RSA. Розглянута схема не є симетричним алгоритмом, оскільки використовуються різні ключі для шифрування та розшифрування. З іншого боку її не можна віднести й до класу криптосистем з відкритим ключем, тому що ключі шифрування та розшифрування легко виходять один з одного. Обидва ключі (відкритий і таємний) необхідно тримати в таємниці.

Аналогічно схемі RSA криптограма C і відкритий текст M визначаються зі співвідношень:

, (4.14)

, (4.15)

де

. (4.16)

На відміну від алгоритму RSA у цій схемі число N не визначається через два великих простих числа; число N повинне залишатися частиною таємного ключа. Якщо хто-небудь довідається значення та N, він зможе обчислити значення .


Не знаючи значень або , зловмисник буде змушений обчислювати значення

.

Відомо, що це є важкою задачею. Схема шифрування Поліга - Хеллмана запатентована в США [9] і Канаді.

5 Алгоритм шифрування Ель Гамаля

Алгоритм Ель Гамаля, розроблено в 1985 р., може бути використаний як для шифрування, так і для цифрових підписів. Безпека схеми Ель Гамаля обумовлена складністю обчислення дискретних логарифмів у кінцевому полі.

Для того щоб генерувати пари ключів (відкритий ключ і таємний ключ ), спочатку вибирають деяке велике просте число P і велике ціле число G степені якого за модулем P породжують велику кількість елементів множини , причому . Числа P й G можуть бути поширені серед групи користувачів.

Потім вибирають випадкове ціле число , причому . Число є таємним ключем і повинне зберігатися в секреті.

Далі обчислюють відкритий ключ

. (4.17)

Для того, щоб зашифрувати повідомлення М, вибирають випадкове ціле число , що задовольняє такі умови:

, (4.18)

. (4.19)

Потім обчислюють числа

(4.20)

(4.21)

Пари чисел (а,b) є шифротекстом. Помітимо, що довжина шифротексту вдвічі більша довжини вихідного відкритого тексту М.