ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 23.06.2024
Просмотров: 103
Скачиваний: 0
Таблица 22
Пределы прочности стеклотекстолита СТЭР-1 в функции угла а
|
Предел |
прочности мате |
Нормальные нап ряж е |
|
|
Угол |
ния, действующие |
Напряжение |
межслой |
||
риала |
по тензориальной |
в момент разрушения |
|||
наклона |
формуле (57), кгс/см 2 |
перпендикулярно слоям |
ного сдвига, |
кгс/см2 |
|
волокон |
|
|
ткани, кгс/см2 |
|
|
сс, град |
|
|
|
|
|
|
|
|
|
|
|
ав |
°в + S aB- S |
°г |
°z + 5 |
|
|
4- 6 |
|
0 |
3000 |
3316 |
2684 |
0 |
0 |
0 |
0 |
0 |
5 |
2851 |
3156 |
2547 |
21,7 |
24,0 |
19,4 |
248 |
274 |
Ю |
2496 |
2772 |
2220 |
75 |
83,0 |
67 |
425 |
470 |
15 |
2097 |
2337 |
1857 |
140 |
156 |
124 |
525 |
585 |
20 |
1755 |
1962 |
1548 |
206 |
230 |
180 |
560 |
630 |
25 |
1498 |
1679 |
1318 |
266 |
300 |
234 |
570 |
640 |
30 |
1320 |
1481 |
■ 1159 |
330 |
370 |
290 |
570 |
640 |
35 |
1207 |
1356 |
1059 |
396 |
445 |
346 |
570 |
640 |
40 |
1149 |
1291 |
1008 |
472 |
530 |
495 |
570 |
635 |
45 |
1140 |
1280 |
1000 |
570 |
640 |
500 |
570 |
640 |
50 |
1180 |
1323 |
1036 |
690 |
775 |
605 |
570 |
650 |
55 |
1276 |
1429 |
1123 |
855 |
750 |
600 |
570 |
670 |
60 |
1445 |
1612 |
1276 |
1080 |
1200 |
960 |
625 |
700 |
65 |
1714 |
1904 |
1521 |
1400 |
1560 |
1240 |
655 |
730 |
70 |
2130 |
2350 |
1904 |
1860 |
2005 |
1670 |
680 |
750 |
75 |
2750 |
3006 |
2489 |
2560 |
2800 |
2300 |
685 |
750 |
80 |
3600 |
3883 |
ЗЗЮ |
3500 |
3660 |
3200 |
615 |
660 |
85 |
4507 |
3795 |
4217 |
4500 |
4750 |
4180 |
390 |
415 |
90 |
4940 |
5220 |
4660 |
4940 |
5220 |
4660 |
0 |
0 |
11’ *к*
0
222
378
465
495
500
500
500
530
500
510
530
550
580
610
620
565
366
0
По формулам |
(85) и из табл. |
21 находим |
и <тх: ххг = |
= 570 кгс/см2; сг* |
= 570 кгс/см2, тпр |
= 460 кгс/см2 |
тв хг. |
Влияние регулярных искривлений на прочность при межслойном сдвиге исследовалось на укороченных образцах путем их попереч ного изгиба. Метод определения предела прочности при межслойном сдвиге основан на определении предельной нагрузки, при которой образец стеклопластика, лежащий на двух опорах и нагруженный силой посредине, расслаивается под действием касательных напря жений. Для испытаний образцов использовали разрывную машину ЦДМ-2,5; скорость нагружения составляла 10 мм/мин.
Предел прочности при межслойном сдвиге тв (в кгс/см2) для образ цов правильной структуры вычисляется по формуле
9 Е. К. Ашкенази |
129 |
где Р — максимальная нагрузка, достигнутая в процессе испытания, кгс; b — ширина образца, см; h — высота образца, см.
С увеличением параметра искривлений / меняется характер раз рушения образцов: наряду с расслоениями от касательных напря жений наблюдается разрыв волокон от нормальных напряжений, что не имеет место при нормальной структуре образцов.
Искривления волокон, как показано в [8], оказывают существен ное влияние на прочность композитных материалов. Если волокна имеют достаточно высокую прочность, то разрушение композитного материала при растягивающих и сжимающих напряжениях проис ходит под влиянием сдвигового напряжения.
Сдвиговое напряжение для данного случая вычисляется по ана
литической формуле [8] |
|
|
|
тхг — |
ахкIѴ'а Ai |
Ех sin ■л х |
(88) |
|
С |
Е* |
|
здесь ах — нормальные |
напряжения |
вдоль основы для |
образца |
с прямыми волокнами; |
Ѵа — относительный объем арматуры; Іг — |
длина |
волны вдоль основы; А х— высота волны вдоль основы; / 2— |
||
длина |
волны вдоль утка; |
k x — параметр, определяемый из выра |
|
жения |
я2 |
|
|
|
К |
(89) |
|
|
|
4 1 Е г &
Эхг і\
По формуле (89) подсчитывается k x для материалов, у которых ис кривления не являются строго эквидистантными.
Условие прочности при растяжении или сжатии в рассматривае мом случае с учетом сдвиговых деформаций может быть записано
в виде r™zax =s£ [Тв хг], где решающей обычно является прочность сцепления на границах раздела между волокнами и связующим.
После возникновения локальных разрушений по изгибу волокон наступает общее разрушение образца за счет расслоения.
Рассматривая подобным образом процесс разрушения, можно найти выражение для поперечного растяжения образца.
Из работы [8] имеем
|
|
|
|
(J2 |
&2Е2, |
|
|
|
|
|
где е2 = d(ö/dz\ |
о2— среднее нормальное напряжение в направле |
|||||||||
нии, перпендикулярном плоскости листа: |
|
|
|
|
||||||
о, = |
<гАРа |
■'к |
Е х |
|
л х |
‘2 |
Е г |
ЛХ |
(90) |
|
к |
Е* |
COS |
~ТГ — Гу Л ІХ |
Gxz Ctg |
|
|||||
здесь в формулу |
(90) |
введены |
сдвиговые |
напряжения |
(см. фор |
|||||
мулу (88)): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
а |
к |
sm ■л х |
|
|
|
|
|
|
|
|
|
|
|
|
|
130
При двухосном растяжении или сжатии стеклопластика проч ность будет выше, чем при одноосном напряженном состоянии.
Поперечное сжимающее напряжение в первом случае повышает силы трения на границах между волокнами, а также уменьшает по перечное растягивающее напряжение от искривления волокон.
Таким образом, наличие в деталях из стеклопластика дефектов в виде искривления волокон существенно изменяет их несущую способность (снижаются упругие и прочностные свойства), что есте ственно ограничивает области их возможного применения.
Влияние регулярных искривлений при ударном изгибе исследо валось путем определения ударной вязкости и удельной работы удар ного разрушения. Испытания проводились на маятниковом копре МК-30, в котором образец свободно лежал на двух опорах. Нагрузка осуществлялась при помощи маятника, производящего удар посре дине пролета. Скорость движения маятника в момент удара состав ляла (3,0—4,0) ± 0,1 м/с.
Ударную вязкость, т. е. величину работы, затраченной на разру шение образца, отнесенную к площади его поперечного сечения (в кгс-см/см2), определяли по формуле
АЛ |
(91) |
|
bh ’ |
||
|
где АА — работа, затраченная на разрушение образца, кгс-см; b — ширина образца, см; h — толщина образца, см.
Удельную работу ударного разрушения, т. е. величину работы, затраченной на разрушение образца, отнесенную к моменту сопро тивления его поперечного сечения (в кгс-см/см3), определяли по формуле
6ДЛ |
(92) |
|
Ч — bh? ’ |
||
|
где bh2!6 — момент сопротивления поперечного сечения образца, см3. На рис. 72 показан характер разрушения образцов с нормальной и нарушенной структурой при ударном изгибе. Образцы с нормаль
ной структурой расслаиваются с раскрытием слоев, образцы с искрив лениями разрушаются путем разрыва слоев.
Рассмотрим влияние расслоений на снижение нормальной и сдви говой прочности стеклопластиков. Влияние расслоений на проч ность при поперечном изгибе исследовалось на образцах, изготовлен ных из материалов СТЭР-1 и СТЭТ-1. Для этого были отпрессованы пластины с искусственно заложенными дефектами в виде расслое ний, которые создавались с помощью прослоек триацетатной пленки. Триацетатная пленка закладывалась в середину пакета при укладке пластин (рис. 73). Ширина полос триацетатной пленки варьировалась от 10 до 40 мм при постоянной толщине, равной 0,04 мм.
Отпрессованные пластины разрезались на стандартные образцы так, что дефект всегда находился в зоне опасного сечения и распола гался по нейтральной плоскости образца в середине его длины. Все
9 ; |
131 |
образцы вырезались вдоль основы. Испытания проводились на ма шине ЦДМ-2,5, скорость нагружения 20 мм/мин.
Предел прочности образца с нормальной структурой при попереч ном изгибе вычислялся по формуле (84) при ах = сгв.
В настоящее время вопросы дефектного состояния материала, условия распространения трещин и падение прочности до величины, реально достижимой, исследуются на основании теории Ирвина
(см. [27]).
Рис. 72. |
Влияние искривлений на характер разрушения при |
|
ударном |
изгибе: а — контрольный |
образец, f = 0; б — образец |
|
с искривлениями |
f = 14,2. |
В развитие этой теории получены решения, позволяющие оценить влияние отмеченных факторов. Вводится в рассмотрение новый кри терий прочности, такой, как коэффициент интенсивности напряже ний, с помощью которого представляется возможным оценить вели чину площади дефекта и ее влияние на прочностные характеристики конструкции. Вместе с тем в качестве первого приближения могут быть использованы эмпирические зависимости, предложенные в ра боте [27].
Предполагается, что площадь поперечного сечения образца свя
зана с объемом зависимостью |
|
F = ]/2/3. |
(93) |
Учитывая, что площадь поперечного сечения образца равна сумме площадей материала, не имеющего расслоений, и материала с рас слоениями F2, можно записать выражение для прочности материала-, имеющего дефекты в виде расслоений:
(94)
Р — растягивающая сила.
132
Прочность материала, Не имеющего дефектов;
(95)
Отношение прочности дефектного материала к прочности мате риала, не содержащего расслоений:
или |
(96) |
|
' - 4 |
||
|
Рис. 73. Места расположения расслоений в пластинах.
Используя зависимость (93), можно записать
.£»_ _ |
1_ |
f ü |
Y |
/3- |
(97) |
|
Ств |
|
U |
У |
’ |
|
|
здесь V — объем материала, не имеющего расслоений; |
ѴА— объем |
|||||
материала с расслоениями. |
|
|
|
|
|
|
С учетом выражения |
(84) |
|
|
|
|
|
|
3 |
РІ |
г |
|
|
(98) |
|
2 |
Wi2 |
|
|
|
|
|
|
|
|
|
||
Как видно из рис. 74, |
^увеличением объема расслоений прочность |
падает от 2 до 46%, причем значения пределов прочности, подсчи танные по формуле (84), отличаются от значений эксперимен тально полученных точек, подсчитанных по формуле (98).
На рис. 75 показан характер разрушения образцов, испытанных при поперечном изгибе. Образцы с нормальной структурой, изго товленные из стеклопластиков СТЭТ-1 и СТЭТ-2, разрушаются от нормальных напряжений.
Образцы, имеющие искусственные расслоения, разрушаются от касательных напряжений путем сдвига слоев. Поэтому следует
5 3 7 |
133 |
Рис. 74. Зависимость прочности образцов из пресс-материалов СТЭР-1 (/) и СТЭТ-1 (2) от объема дефекта при изгибе.
1, 2 — кривые, вычисленные по формуле (84); экспериментальные значения (крестики и треугольники) — по формуле (98).
Рис. 75. Влияние расслоений на характер разрушения при поперечном изгибе: а — контрольный образец (1 — из материала СТЭТ-1; 2 — из материала СТЭТ-2); б—г — образцы с расслое нием: б — I = 20 мм; в — I = 30 мм; г — / = 40 мм.
134
определять предел прочности при сдвиге дефектного материала по формуле
Кд \2/3 __ |
3 |
Р |
(99) |
V ) |
4 |
bh |
Влияние расслоений на прочность при межслойном сдвиге иссле довалось путем определения предела прочности при межслойном сдвиге по методике, изложенной выше. Расслоения закладывались в виде полос триацетатной пленки.
Предел прочности при межслойном сдвиге для образцов пра вильной структуры определялся по формуле (87).
6,0
X
V:
см
й
3,0
2,0
'' |
0,067 |
■ 0,т |
0,2 |
0,266 |
|
|
|
|
ѵл/ѵ-ЩУ* |
Рис. 76. Зависимость прочности образцов из пресс-материалов СТЭТ-1 (1) и СТЭР-1 (2) от объема дефекта при разрушении от межслойного сдвига.
1, 2 — кривые, вычисленные по формуле (87); экспериментальные значения (крестики и треугольники) — по формуле (99).
Как видно из рис. 76, снижение прочности при межслойном сдвиге зависит от объема дефекта и составляет для материала СТЭР-1 от 43 до 60%, для материала СТЭТ-1 от 24 до 47%. Из рис. 76 видно, что между значениями разрушающих напряжений и относительным объемом дефектной зоны существует степенная зависимость:
k — коэффициент однородности.
На рис. 76 не показан характер разрушения образцов с нор мальной структурой и имеющих искусственные расслоения. С уве личением длины расслоений раскрывается трещина по нейтраль ному слою.
Наиболее опасные технологические дефекты, обнаруженные в крупногабаритных деталях из стеклопластика, искривления и рас слоения, предложено снижать путем прессования отдельных сердеч ников и последующего прессования изделий с сердечниками. При этом в наружных несущих слоях искривления отсутствуют, а вну тренний объем заполнен гофрированным материалом с определен
135