Файл: Лепилов Н.С. Теория автоматического управления учеб. пособие.pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 24.07.2024
Просмотров: 130
Скачиваний: 0
ность. Ускорится внедрение высокосоверш-нных систем автоматичес кого управления. Получат широкое применение кибернетика, элект ронные счетно-решающие и управляющие устройства в производствен
ных процессах промышленности, строительной |
индустрии и |
транспор |
||
т а , |
в научных исследованиях, |
в плановых и проектно-конструкторс |
||
ких |
расчетах, в сфере учета |
и управления” . |
На важность |
всемерно |
го совершенствования управления народным хозяйством указал в своих решениях ХХІУ съезд КПСС. Интересы защиты нашего госу дарства требуют особого внимания к внедрению автоматических ус тройств в современные образцы военной техники.
До ХУШ века теории автоматического управления не существо вало. В конце ХУШ века бурное развитие промышленности в ряде стран потребовало создания автоматически работающих регуляторов. Системы автоматического управления на этом этапе создавались изобретателями без теории. Так, в 1765 г . русский механик И .И . Ползунов изобрел автоматически работающий регулятор уровня
воды в котле паровой машины. Это была первая в мире промышлен ная система автоматического управления. В 1784 г . англичанин Уатт изобрел центробежный регулятор скорости паровой машины. Изобретение его сыграло важную роль как в развитии систем авто
матического управления, так и в возникновении теории автомати ческого управления. Во второй половине XIX века появились значи тельные теоретические работы по ТАУ, так , ндпример, статья ан глийского физика А .К . Максвелла "О регуляторах" (1868 г .) и ра боты профессора И .А . Вышнеградского "Об Общей теории регулято ров" (1876 г .) и "О регуляторах прямого действия" (1877 г . ) .
В вышеназванных работах И .А . Вышнеградский вывел условие устой чивости для систем, описываемых уравнениями третьего порядка (критерий устойчивости Выинеградского), и дал рекомендации по определению качества управления. Хотя теория автоматического управления существовала и развивалась с 1876 г . (основоположни ком ТАУ следует считать И .А . Вышнеградского), но до 1892 г . не было научно обоснованной теории устойчивости.
В 1892 г . русский математик А.М . Ляпунов в своей докторс кой диссертации "Общая задача об устойчивости движения" дал точ ное математическое определение понятия устойчивости и разрабо тал методы определения устойчивости для любых систем как линей ных, так и нелинейных. Работа Ляпунова написана в чисто матема тическом стиле, так что читать ее может инженер с высокой мате матической подготовкой. Это обстоятельство затрудняло распрост ранение идей Ляпунова, и только трудами советских ученых
10
Н .Г . Четаева, А .И . Лурье, И .Г . Малкина, А.М . Летова и других теория Ляпунова внедряется в практику инженерных расчетов.. Над
проблемами ТАУ работал Н .Е . Жуковский, который в 1909 г . в ра боте "Теория регулирования хода машин" решил ряд задач, связан ных с учетом сухого трения в нелинейных системах. ТАУ получила полный простор для своего развития после Великой Октябрьской социалистической революции. С 1936 г . в нашей стране издается журнал "Автоматика и телемеханика", который в настоящее время является ведущим журналом по ТАУ. В 1938 г . ТАУ получила новое, частотное направление. Развитие частотных методов в Советском Союзе начинается работами А .В . Михайлова.
Частотный метод проектирования систем управления обеспечи вает быстрое решение задачи, В нашей стране частотные методы развиваются советскими учеными В .В . Солодовниковым, Я .З . Цыпкиным, А .С . Шаталовым и многими другими. Частотные методы эффек тивно сочетаются со структурными методами исследования, теория которых развита в работах А .С . Шаталова, А .В . Солодова и других.
Большие успехи достигнуты советскими учеными в разработке теории нелинейных систем. Здесь следует отметить основопола гающие работы А .А . Андронова, А .А . Витта и С .Э . Хайкина "Тео рия колебаний", Н.М. Крылова и Н .Н . Боголюбова "Введение в не линейную механику", вышедшие в 1937 г . Важные результаты иссле дования нелинейных систем получены Б .В . Булгаковым, В .С . Кулебякиным и другими учеными. Частотное направление исследования не линейных систем, предложенное в работе Н.М. Крылова и Н .Н . Бого любова, развито трудами советских ученых Е .П . Попова, Л .С . ІЪльдфарба и других.
Системы автоматического управления работают при воздейст вии на них случайных помех, являющихся случайными функциями времени. Анализ работы системы в этих условиях требует примене ния статистических методов, основанных на теории вероятностей. Применительно к САУ статистические методы исследования изложены в работах В .В . Солодовникова, А .А . Фельдбаума, В .С . Пугачева, В .Л . Лебедева, А .В . Солодова, И .Е . Казакова, Н .И . Андреева и других.
В середине пятидесятых годов работами советских и американ ских ученых были заложены основы теории оптимальных систем: принцип максимума А .С . Понтрягина (СССР) и динамического про граммирования Р . Беллмана (США).
Последние 25 - 30 лет характеризуются интенсивной разработ кой импульсной техники, цифровых вычислительных машин и днскрет-
I I
ных систем автоматического управления. Теория дискретных (им пульсных) систем как самостоятельное направление возникло всего
лишь около 20 лет назад. Первые ее результаты были подытожены в монографии Я .З . Цыпкина "Переходные и установившиеся процес
сы в импульсных цепях" (1951 г . ) . За прошедшее время теория дис кретных систем продолжала обогащаться все новыми и новыми ре
зультатами. |
Среди |
советских ученых, которые внесли весомый вклад |
||
в развитие |
теории |
дискретных систем, можно отметить Л .Н . Волги |
||
н а , |
В .Н . Захарова, |
П .Д . Крутько, В .П . Перова, С .М . Федорова, |
||
Я .З . |
Цыпкина и других. |
|
||
|
|
Материалы для проверки усвоения |
||
|
|
|
содержания параграфа |
|
|
1 . Дайте краткую историческую справку о развитии ТАУ. |
|||
|
2 . Какова роль отечественных и советских ученых в развитии |
|||
ТАУ ? |
§ 1 .2 . |
СОСТАВ И ПРИНЦИП ДЕЙСТВИЯ СИСТЕМ |
||
|
|
|
АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ |
|
|
|
|
Методические |
указания |
|
Изучив параграф, слушатели |
должны запомнить основные поня |
тия и определения ТАУ (выходная координата, регулируемая вели чина, управляющее и возмущающее воздействия, замкнутая и разом кнутая системы), а также должны знать состав , назначение эле ментов и принцип действия замкнутой САУ.
Содержание
Всякая система автоматического управления (САУ) состоит из автоматического регулятора и регулируемого объекта. Для краткос ти часто их называют регулятором и объектом соответственно.
Объект должен без помощи человека автоматически находиться в каком-либо состоянии или совершать заданное движение. Это со стояние иди движение объекта поддерживается регулятором, для че го регулятор оказывает силовое воздействие на объект. Состояние, движение объекта можно характеризовать некоторыми физическими величинами (скорость, угол , температура, напряжение, частота и т . п . ) , которые называют выходными координатами объекта.
12
Выходные координаты, отклонения которых от заданных значений
воспринимаются датчиками (измерительными |
устройствами), называ |
||
ются регулируемыми |
величинами. |
Системы с |
одной регулируемой ве |
личиной именуются |
одномерными |
системами |
управления (регулиро |
вания). Системы с несколькими регулируемыми величинами называют ся многомерными (двухмерными, трехмерными и т . д . ) системами управления. Заданные значения регулируемых величин иначе назы ваются управляющими задающими воздействиями. Помимо задающих воздействий на САУ обычно действуют разнообразные возмущающие факторы, отклоняющие движение (состояние) объекта от заданного. Эти факторы носят название возмущающих воздействий.
Системой автоматического управления называется такая авто матически (без помощи человека) действующая система, которая в течение достаточно длительного времени поддерживает требуемое неизменное значение некоторой физической величины в каком-либо
процессе (при любых возмущающих воздействиях) |
или же изменяет |
|||||
это значение по заранее заданной |
программе. |
в |
зависимости |
от |
то |
|
Все |
системы автоматического |
управления |
||||
г о , какие |
источники информации используются |
в |
регуляторе |
для |
|
формирования управляющего воздействия, делятся на замкнутые САУ, разомкнутые САУ и комбинированные САУ, представляющие сочетание замкнутых и разомкнутых систем.
Замкнутыми называются такие системы, в которых для формиро вания управляющего воздействия на объект регулирования использу ется информация о действительном значении регулируемой величины. Разомкнутыми называются такие системы, в которых для формирова ния управляющего воздействия не используется информация о дейст вительном значении регулируемой величины.
При рассмотрении схем систем управления направление прохож дения сигналов обозначается стрелками. Большинство элементов САУ обладает свойствами направленного действия. Это свойство за
ключается |
в том, |
что сигнал на входе элемента определяет сигнал |
на выходе |
этого |
элемента, однако сигнал на выходе практически |
не влияет на |
входной сигнал. |
||
ной. |
Для простоты рассмотрим объект с одной регулируемой величи |
||
На рис. |
І . І представлена функциональная схема замкнутой |
||
одномерной САУx(t),. |
|||
тX.е . |
Величина |
которую необходимо в объекте регулировать, |
|
поддерживать постоянной или изменять по заданной программе |
|||
(tj, |
является регулируемой величиной. Регулятор включает в |
||
себя |
|
||
датчик, |
вычислительное устройство (ВУ) и исполнительное |
13