Файл: Штейнберг, Ш. Е. Промышленные автоматические регуляторы.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 14.10.2024

Просмотров: 136

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

наиболее прост для обработки и использования. Условия его применения следуют из известного в теории массово­ го обслуживания факта, что сумма значительного числа независимых малых стационарных и ординарных пото­ ков при весьма общих условиях близка простейшему по­ току [Л. 34]. Каждый общепромышленный регулятор со­ стоит из весьма большого числа элементов и поток от­ казов регулятора является суммой потоков отказов его элементов. Если нельзя выделить элемент с превалирую­ щим числом отказов (т. е. поток отказов каждого из эле­ ментов мал) и условия эксплуатации постоянны, то мож­ но предполагать применимость простейшего потока для описания потока отказов регулятора. Задаваемые ГОСТ и ТУ характеристики надежности регуляторов и их устройств обычно предполагают применение модели про­ стейшего потока.

Дискретная

случайная

величина — число

отказов

N(t)

в этом потоке на

произвольно расположенном от­

резке

времени

длиной

t

распределена по закону

Пуас­

сона

 

 

 

 

 

 

 

Я { # ( 0

= п} =

^

е

- " > = 0,1,2 - .. ),

(17-6)

где и — некоторый параметр, численно равный интенсив­ ности потока. Положив в (17-6) п = 0, найдем закон рас­ пределения непрерывной случайной величины Т — вре­ мени между отказами:

р [N (0 = 0} = Р {Т > 0} = e~ut.

(17-7)

Таким образом, в простейшем потоке все времена между отказами распределены по показательному зако­ ну. Отметим также, что эти времена взаимно независимы.

Наработка на отказ

* с р = — •

О ™ )

1

и

 

Верхняя односторонняя граница интенсивности пото­ ка отказов и„ с доверительной вероятностью 1q может находиться из соотношения

(17-9)

где А9 (п)—<7-квантиль пуассоновского распределения, таблица которого приведена, например, в [Л. 35].

532


Величины и

и п

определяются соотношениями (17-1)

и (17-2). Приближенно при

п > 3 0

можно

принять,

что

 

 

 

 

 

и . « и ^ 1 ' +

 

(17-Ю)

где Б д 7 - 100% - ная

точка

нормального

распределения

(при 1—^=0,8 єо,2=0,842).

 

 

 

 

Если условия эксплуатации (например,

температура,

вибрация, влажность)

существенно

изменяются по опре­

деленному неслучайному закону, то для

описания

на­

дежности

регуляторов

мо­

 

 

 

 

жет

быть

применена

мо­

 

 

 

 

дель

неоднородного

пуас-

 

 

 

 

соновского

потока.

Этот

 

 

 

 

поток

является

ординар­

 

 

 

 

ным и не имеет последей­

 

 

 

 

ствия, но в отличие от про­

 

 

 

 

стейшего потока он

неста­

 

 

 

 

ционарен.

 

Интенсивность

 

 

 

 

такого

потока

u(t)

зави­

 

 

 

 

сит от

времени.

 

 

 

 

 

 

 

Пример

графика

изме­

 

 

 

 

нения интенсивности

в не­

 

 

 

 

однородном

 

пуассонов-

 

 

 

 

ском

потоке отказов элек­

 

 

 

 

трических

 

регуляторов

 

 

 

 

ЭАУС,

установленных

на

 

 

 

200 300

U00

500

ч.

тепловой

электростанции,

Рис. 17-2.

График

изменения

ин­

дан на рис. 17-2.

 

 

 

 

 

 

тенсивности потока

отказов регу­

В

качестве

момента

ляторов ЭАУС в период прира­

^=0

взято включение

ре­

ботки.

 

 

 

 

 

 

гуляторов в эксплуатацию

 

 

 

 

 

 

 

 

вместе

с блоком

котел — турбина. Зависимость,

аппрок­

симирующая

экспериментальные

 

значения

интенсивно­

сти

потока отказов, имеет

вид:

_1_

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

где

 

 

 

 

 

и (t) — иг + « 2

е

T l

,

 

 

потока

«і установившееся значение

интенсивности

отказов

по

окончании

периода

 

приработки

(иі=

= 1250 - Ю - 6

1/ч);

и2

и

Тх — постоянные

( ы 2 = Ю 0 0 Х

Х Ю - 6

1/ч; 7", = 120

«).

 

 

 

 

 

 

 

 

 

Если

условия

эксплуатации

изменяются

случайным

образом,

то для

описания

потока

отказов

регуляторов

533


может быть использована так называемая

модель пото­

ка отказов со случайной интенсивностью

(см. [Л. 36]).

При случайном изменении условий эксплуатации меняет­ ся и интенсивность потока отказов. Если на каком-либо отрезке времени интенсивность имеет повышенное зна­ чение, то более вероятно, что на смежном отрезке интен­ сивность потока также будет иметь повышенное значе­ ние, т. е. числа отказов на смежных непересекающихся отрезках времени будут зависимыми случайными вели­ чинами. Следовательно, этот поток имеет последействие. Изменение условий эксплуатации увеличивает разброс числа отказов: если в простейшем потоке на любом от­ резке времени дисперсия числа отказов равна их средне­ му числу, то в потоке со случайной интенсивностью от­ ношение б2 дисперсии числа отказов к их среднему числу больше единицы.

Отметим, что если случайный процесс изменения ус­ ловий эксплуатации стационарный, то и поток отказов стационарен.

Доверительный интервал интенсивности потока отка­ зов в этом потоке шире, чем в простейшем [см. соотно­ шение (17-10)]:

1

+ 6 - ^

(17-11)

 

 

Vn

Заметим, что приведенные выше соображения о, выбо­ ре той или иной модели потока не являются доказатель­ ными. Обоснование выбора модели потока достаточно строго может быть проведено только на основании об­ работки статистических данных об отказах и проверки гипотез о наличии у потока отказов тех или иных свойств (например, по изменению интенсивности потока или по величине отношения дисперсии числа отказов к их сред­ нему числу). Методика этой обработки применительно к потокам отказов промышленных систем управления рассмотрена в [Л. 37].

Знание вида потока отказов регуляторов и его свойств необходимо для расчета профилактического обслужива­ ния, анализа влияния внешних факторов, точного расчета количества запчастей. Однако для определения вида по­ тока отказов необходим большой объем эксперименталь­ ных данных о надежности. Значительно меньший объем данных требуется для определения таких характеристик, как интенсивность потока отказов, наработка на отказ

534


или вероятность безотказной работы. Зная эти характе­ ристики, можно сравнивать надежность различных регу­ ляторов, выбирать наиболее надежные устройства.

г) ХАРАКТЕРИСТИКИ РЕМОНТОПРИГОДНОСТИ

Ремонтопригодность регулятора и входящих в него устройств можно измерить с помощью времени восста­ новления, которое складывается из времени, затраченно­ го на поиск причины отказа, и времени, затраченного на его устранение. Устранение отказов регуляторов обыч­ но производится следующим образом. Восстановление после отказов, не требующих много времени и специаль­ ной аппаратуры для их устранения, проводится на месте установки отказавшего устройства. В иных случаях уст­ ранение отказа заключается в замене отказавшего устройства на исправное, а ремонт отказавшего устрой­ ства производится в мастерской. Время ремонта в ма­ стерской не включается во время восстановления и рас­ сматривается отдельно. Выбор способа восстановления во многом зависит не только от вида отказа, но и от при­ нятой системы ремонтов, квалификации персонала, про­ водящего восстановление на месте установки и в мастер­ ской, и т. д.

Так как время восстановления является непрерывной случайной величиной, то ее задание осуществляется с по­ мощью плотности распределения. Количественным пока­ зателем ремонтопригодности является среднее время восстановления /восст.ср- Его статистическое определение (точечная оценка) находится из соотношения

 

 

 

m

 

 

 

 

 

 

2

'вос^восст і

 

 

 

 

^воест.ср =

>

 

(17-12)

где /восстг

результат 1-го замера времени

восстановле­

ния; т — число замеров.

 

 

 

Нижняя и верхняя

доверительные

границы среднего

времени

восстановления при числе замеров

m>20-f-30

с доверительной

вероятностью

1—q определяются соот­

ношениями

 

 

 

 

 

 

/

~ Г

! _ е

 

 

'восст.н

' "-восст-ср

 

<//2>

 

У т

535