Файл: Руководство к лабораторным занятиям по физике учеб. пособие.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 14.10.2024

Просмотров: 224

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

562

VII. ФИЗИКА ТВЕРДОГО ТЕЛА

Соотношение величины подъемов кривой фототока на собствен­ ных и на примесных переходах зависит от концентрации примесей н от температуры. В чистых полупроводниках концентрация приме­ сей очень мала. Кроме того, фотонное возбуждение примеси приво­ дит к появлению всего одного носителя тока — электрона или дыр­ ки, в то время как при собственной проводимости поглощение каж­ дого фотона сопровождается возникновением электрона и дырки одновременно.

С повышением температуры примесная фотопроводимость умень­ шается быстрее, чем собственная. Может случиться, что уже при комнатной температуре большая часть примесных атомов терми-

УМ-2 Л,

Л

И

 

 

¥

Рис. 295. Схема установки для исследования спект­ ральной зависимости фототока.

чески ионизована, и оставшаяся часть дает незначительный вклад в фотопроводимость. Поэтому примесная. фотопроводимость может оказаться значительно меньше собственной фотопрово­ димости.

В предлагаемой работе положение примесных уровней и ширина запрещенное зоны полупроводника определяются по энергиям, при которых начинаются подъемы кривой фототока. Такой способ определения не отличается точностью, но полученные с его помощью результаты достаточно надежны.

Опыты проводятся на полупроводящих пленках или тонких пластинках монокристаллов CdS и CdSe с примесью ионов меди или без примеси. В отличие от большинства полупроводников, ширина запрещенной зоны у этих полупроводников сравнительно велика

Р 87. ФОТОПРОВОДИМОСТЬ В ПОЛУПРОВОДНИКАХ

563

(более 1,5 эВ). Акцепторный уровень, обусловленный ионами меди, лежит на большом удалении как от заполненной зоны, так и от зоны проводимости. В этих условиях красная граница примесной фото­

проводимости

лежит в области

видимого света,

в то время как

у большинства других полупроводников она

расположена в

инфракрасной

области. Малый

темновой ток и большой световой

выход позволяют проводить опыты без модуляции светового потока.

Описание установки. Схема экспериментальной установки изоб­ ражена на рис. 295. Свет от источника И с помощью линзы Л фоку­ сируется на входную щель монохроматора УМ-2. Эта щель нахо­ дится в фокусе коллиматорной линзы Лѵ Параллельный пучок лучей, выходящий из Лх, разлагается в спектр призмой Я. Выход­ ная щель находится в фокальной плоскости окулярной линзы Л2 и вырезает из спектра нужную область. Прошедший сквозь выход­ ную щель свет падает на ячейку с исследуемым образцом, обозна­ ченную на рисунке буквой Д. Последовательно с образцом вклю­

чена семидесятивольтовая

батарея, служащая источником э. д. с.

Усилитель У1-2

служит

для

измерения тока,

проходящего че­

рез образец.

 

 

 

 

Спектральное

распределение

потока фотонов

на выходе моно­

хроматора и градуировочная кривая монохромотора приведены на графиках, приложенных к работе.

'Измерения. 1. В начале работы включите усилитель У 1-2 в сеть переменного тока.

Следует помнить, что пользоваться усилителем для измерений можно только после получасового прогрева, так как до этого дрейф нуля усилителя оказывается слишком велик. Включите усилитель в режим измерения тока.

2.Проверьте градуировку монохроматора. Проверка^ прово­

дится по желтому дублету

ртутной лампы

(X1 = 5770Â, л2 =

= 5790 Â) и желтой линии неоновой лампы (Х3

= 5852 А).

Проверка производится

в следующем порядке:

а) отодвиньте выносной блок усилителя от выходной щели монохроматора;

б) выньте выходную щель монохроматора и вставьте вместо нее окуляр;

в) включите ртутную лампу и сфокусируйте ее лучи с помощью линзы на входную щель монохроматора. Наилучшие условия для измерений создаются в том случае, когда оптическая система моно­ хроматора полностью заполнена светом. Это осуществляется при выполнении соотношения DA : b = DaX : F, гдеП^ — диаметр линзы, b — ее расстояние от входной щели монохроматора, Dл1 и F — диа­ метр и фокусное расстояние объектива. Приведенное соотношение поясняется рис. 296.

Для монохроматора УМ-2 входное отверстие D a : F = 1/0.


564 VII. ФИЗИКА ТВЕРДОГО ТЕЛА

г) настройте монохроматор на желтый дублет и сравните показа­ ния барабана с градуировочной кривой, которая прилагается к ра­ боте;

д) выключите ртутную лампу и включите неоновую лампу, сфокусируйте ее лучи на входную щель монохроматора;

е) настройте монохроматор на желтую линию (Я3 = 5852 Â) и сравните отсчет барабана с градуировочной кривой;

 

Рис. 296. Выбор условий с наилучшей освещенностью.

ж)

в случае несовпадения отсчетов барабана с градуировочной

кривой сместите лимб со шкалой на барабане так, чтобы добиться совпадения.

3.Включите лампу накаливания и сфокусируйте ее нить на входную щель монохроматора. Проследите за тем, чтобы монохро­ матор был заполнен светом (см. п. 2 , в).

4.Выньте окуляр и вставьте вместо него выходную щель.

5.Ширину входной и выходной щелей монохроматора устано­ вите равной 0,04 мм. Такая ширина щелей обеспечивает освещение образца и достаточную величину фототока.

6. Пододвиньте выносной блок усилителя с подключенным к нему

образцом к выходной щели монохроматора. 7. Измерьте темновой ток образца.

8 . Снимите зависимость фототока от длины волны возбуждающего света. Каждое измерение величины тока необходимо производить после четырехминутной выдержки. При измерении следует си­ стематически «проверять нуль» усилителя. Длина волны опре­ деляется по градуировочной кривой. Величина фототока определя­ ется путем вычитания темнового тока из показаний прибора.

9. Постройте кривую спектральной зависимости фототока для исследуемого образца. Для этого необходимо пересчитать фототок на постоянный поток фотонов. При пересчете следует использовать прилагаемый к работе график спектрального распределения потока фотонов на выходе монохроматора.

10. По полученной спектральной зависимости фототока опре­ делите энергию ионизации примесного уровня и ширину запрещен­ ной зоны исследуемого полупроводника. Тип полупроводника указан на ячейке, в которой смонтирован образец. В качестве крас­ ной границы следует использовать энергию фотонов, измеряемую на середине соответствующего подъема в кривой фототока.


Р 87. ФОТОПРОВОДИМОСТЬ В ПОЛУПРОВОДНИКАХ

565

Контрольные вопросы

1. Почему фотосопротивления изготовляются из тонких полупроводниковых пленок, пропускающих сквозь себя заметную часть падающего света?

2. Почему на кривой фототока видны один или два, а не три поднимающихся участка (переход из заполненной зоны в зону проводимости, переход из валент­ ной зоны на примесный уровень, переход с примесного уровня в зону проводи­ мости)?

3. Почему после освещения полупроводника фототок устанавливается спустя некоторое время?

 

ЛИТЕРАТУРА

1 . 4 .

К и т т е л ь, Элементарная физика твердого тела, «Наука», 1965,

гл. 7, стр.

208—223.

2.Р. Б ь ю б, Фотопроводимость твердых тел, ИЛ, 1962, гл. 3, §§ 1, 2; гл. 6,

§§1, 2, 4.

3. Р. С м и т , Полупроводники, ИЛ, 1962, гл. 7, § 4, 10; гл. 8, § 15; гл. 11,

§ 7.

4. С. М. Р ы в к и н, Фотоэлектрические явления в полупроводниках, Физматгиз, 1963, гл. 1, §§ 1—4.

П Р И Л О Ж Е Н И Я

I.О СИСТЕМАХ ЕДИНИЦ

С1 января 1963 г. постановлением Комитета стандартов, мер и измерительных приборов при Совете Министров СССР введена Международная абсолютная система практических единиц СИ (ста­ рое название МКСА), основными единицами которой являются: метр, килограмм (масса), секунда, ампер, кельвин и кандела (м, кг,

с, А, К, кд). Установлены следующие определения основных еди­ ниц системы СИ:

Метр — длина, равная 1 650 763,73 длины волны в вакууме излучения, соответствующего переходу между уровнями 2р10 и 5db атома криптона-8 6 .

Килограмм — единица массы — представлен массой междуна­ родного прототипа килограмма.

Секунда — время, равное 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133.

Ампер — сила неизменяющегося тока, который при прохожде­ нии по двум параллельным прямолинейным проводникам бесконеч­ ной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызвал бы между этими проводниками силу, равную 2 -ІО-7 ньютон на каждый метр длины.

Кельвин (градус Кельвина) — единица измерения температуры по термодинамической температурной шкале, в которой для темпера­ туры тройной точки воды установлено точное значение 273,16 К.

Кандела — единица силы света, испускаемого с поверхности площадью 1/600 0 0 0 ма полого излучателя в перпендикулярном нап­ равлении при температуре излучателя, равной температуре затвер­ девания платины при давлении 101 325 Па.

Электрические и магнитные единицы устанавливаются для рацио­ нализированной формы уравнений электромагнитного поля.

Для производных величин устанавливаются единицы системы СИ, указанные в таблице. В этой же таблице приведены соответствующие единицы в гауссовой системе и соотношения между единицами си­ стемы СИ и гауссовой. Диэлектрическая и магнитная проницае­

мости вакуума

в системе СИ размерны и равны соответственно:

fc'o = 8,85 -10-1 2

Ф/м, ро = 1,26-КГ6 Г/м. Более подробные сведения

о построении абсолютной рационализированной системы практи­ ческих единиц можно получить в книге С. Г. Калашникова


о >>сс

о

и %

Н

CJ

Я

с.

0)

г

03

03

си

I s S я о я оз 0 ÜJ о ... е ч* 4) са

о S * и я

< s ы «

спо

<я « О,

S ” S

-fО s

3\o a «3о <v

CL 3’

ЙОЙ

о 2 Я U х

35

Кі

Ш м

 

I. О СИСТЕМАХ ЕДИНИЦ

 

 

567

 

В

О

и

и

 

С

 

Г-

1105и и

и

 

 

си

и

Uc

 

 

ст>

 

! О

 

О сі

О

ч 2

Г2

 

І 8

s О

II

Ьг^

II

 

 

— со

 

к I

н

II

03

 

са

 

 

-*

 

 

 

 

 

♦Ц

СО

 

 

 

OJ

 

 

 

N

 

 

СМ•

 

 

 

О

 

а

 

 

 

а

 

 

 

 

 

 

О

 

о

 

 

1

 

 

 

S

 

S

 

 

 

1

 

 

 

U-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Гц

09

 

 

 

 

W

 

 

 

аО

 

 

О

 

 

S

 

Sf

 

■г?

 

"St

 

 

 

Ui

 

 

 

 

03

 

a

 

 

 

 

 

 

 

 

 

си

 

си

 

 

 

 

 

 

Й

 

а

 

 

 

CJ

 

 

 

« ’ss

£*

 

 

= CQ<у

ш

>,

о

ЙI

<U

 

 

 

ТО

 

 

S й)

Н

С^Г

си . н

г

ч

 

і-

аг

2

 

>• <ъ

 

 

 

X g

2 к

*'CU З а

Я я

д > > 2

Си

S и и

О)

 

<Уg

Ä >>

 

Жetн-і tq,

S

 

a

g

§

 

sтаг

и*

5

а

 

>. CS

cf Ж

g

>>§

 

£

8

 

а В?

оз

Я

 

а

о

 

8 «

си °

§ « §

 

S «в

а

ж

 

 

 

 

 

 

О н

0

 

о

 

 

 

 

 

оз

 

 

 

 

 

 

 

 

 

 

 

 

 

со

 

 

і-ч

 

 

 

 

CU

 

 

 

 

 

 

 

 

 

(N

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

а

 

и

 

 

 

 

 

 

S

 

 

Й

 

S

 

и

 

О

 

 

 

І К Г

 

 

 

 

 

 

 

 

со

 

 

о

 

с6

 

^ j_

 

 

 

 

г

 

 

гГ

 

 

 

о

 

 

 

a

 

 

 

 

’s

 

ЕС

 

e t

 

 

 

и

 

 

 

 

 

a

 

a

 

 

 

 

 

 

>>

 

 

 

си

 

си

 

 

 

 

 

 

 

 

 

 

 

й>еС

 

* >в

 

et

 

 

 

 

 

 

 

а

 

 

 

 

 

и оз

 

 

-

а

 

>>

 

 

 

 

 

 

Й

 

Cf

І

а

 

а

 

 

 

 

 

 

«

а,

а и

 

 

 

 

а

£

 

си

оз

 

о

 

^

 

®

Й

си В

 

 

 

а

у

 

 

 

 

 

Н

£ ‘

 

et

 

 

и

X

 

 

 

5- а

 

 

 

 

о

 

 

 

сиet

Й <и

 

 

 

 

 

 

 

S

К

си

 

2

^

 

 

а

а

 

 

 

 

 

 

СЗ

>,

 

 

 

 

 

 

си «

 

 

а

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

а

 

 

 

 

 

 

 

 

 

 

 

 

а

 

 

 

 

 

 

 

 

 

 

 

 

и

 

 

 

 

 

 

 

 

 

 

о

 

си

 

 

 

 

 

 

 

 

 

 

 

о

 

 

 

 

 

 

 

 

й>

 

а

 

оа

 

 

 

6-

 

 

 

 

 

 

 

>>

 

 

 

 

 

 

 

a

 

 

 

и

 

 

a

CJ

 

 

Н

 

в

 

 

 

 

 

О

 

 

 

«и

 

о

 

о

 

 

 

a

 

 

О

 

си

 

 

Й

 

 

о

о

 

 

CU

 

о

 

о

 

о

 

 

 

 

о

 

a

 

 

 

 

 

 

a

ч

 

 

и

 

о

 

 

 

 

 

 

ЗГ

с

 

 

 

 

 

 

 

 

 

1

еа

 

рц

1—1

 

 

и

г1

 

a

 

 

 

 

 

и

 

о

о

«4!

 

 

u U

 

Й

о

 

 

 

г-

et

 

 

 

 

 

 

 

 

 

3

 

 

X

 

 

и

и

 

к

^

 

 

си

 

и

 

аз

и

 

 

 

 

 

UH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

и

и

 

 

и

 

 

в

эр г

 

>■

t-»

 

 

и

 

 

і=С

 

о-

U

 

 

и

 

 

 

 

 

СП

 

03

 

 

 

 

 

 

 

 

 

 

 

 

g -U

 

 

 

 

et

 

c(

 

 

к

 

 

 

 

 

 

к

 

 

 

 

 

 

 

 

a

 

cu

 

 

g o

 

 

 

H

K*1

 

03

 

 

 

 

 

<u

 

 

 

 

 

 

 

tu

 

a

 

n u

 

 

 

 

 

 

о

 

 

«3

2

 

 

O

 

 

03 u .

 

 

 

Л

 

 

 

 

Ej a

 

 

 

 

 

 

a

 

 

а

Щ

 

 

 

 

 

 

a

 

 

a

2

 

 

 

 

 

 

 

 

 

s

a

 

 

 

 

 

 

 

 

 

э

 

 

 

 

 

FH

 

 

 

 

рц

 

 

 

 

 

О

 

и

 

 

с

 

 

 

 

 

tкi

 

 

 

 

 

 

 

 

 

< .

 

н

 

 

 

 

 

 

 

 

 

C Q

 

 

 

X

 

н

 

 

 

 

03

 

 

 

е*

 

C Q

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

a

 

 

 

a

 

 

Е-»

 

 

о

 

 

Е-

 

 

 

 

 

 

о

 

 

a

 

 

н

н

 

 

 

 

 

2

о

 

a

 

>>

 

 

СЗ

 

 

й

 

Й

 

 

 

О

 

 

S

 

 

 

А

 

 

й

 

 

a

et

 

 

 

 

 

 

 

 

 

е;а

 

сия (Ua

 

a оa оO N

 

О

 

 

aн

CU

 

CUс

a aH

 

а

 

 

 

a

 

- 3

 

 

(U

 

a

H

a>

 

я о

 

 

 

 

 

 

а

 

 

D5 Н

 

CT)

u

 

о О

a>

 

UH Ё»

 

 

 

0)

et

<u

в

 

 

О) <и

 

о

a

aa

 

 

CU С

 

 

 

 

aК

a

cu о

 

а н

 

 

 

 

 

Й

 

 

 

 

Й

 

Cu

о

 

a

 

°1 о

 

 

 

a

 

4

 

 

о

a“M

2

 

 

 

 

 

о

cu oaf

cf

 

g£ о8

 

н

а .«X

 

 

a

он

я

a CJa

a

 

«5 §і

 

 

 

<u a

H

 

0)

 

 

о а а

0)

 

 

СХЯ

 

 

ч

 

 

*

H

 

 

 

 

 

 

 

4


568

/ ПРИЛОЖЕНИЯ

Продолжение

II. СВОБОДНЫЕ И ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ В КОНТУРЕ

569

«Электричество», «Наука», 1964 и в книге И. В. Савельева «Курс общей физики», т. II. Электричество, «Наука», 1973.

Укажем простые правила, позволяющие переходить от гаус­ совой системы к системе СИ. Этот переход проще всего производить с помощью переводных множителей, приведенных в последнем столбце таблицы (см. стр. 567). Так, например, в гауссовой системе единиц напряженность магнитного поля Н в точке, удаленной на расстояние г от проводника, по которому проходит ток /, выража­ ется формулой

Н = 2І/сг,

где с — скорость света. Перепишем формулу, введя наименования единиц:

2 / [С Г С ]

Я [Э ] =

3 • Ю 1^ [ с м ] •

Скорость света с в рассматриваемой формуле играет роль числового множителя и заменена числом 3 -1010. Если подставить в формулу г не в сантиметрах, а в метрах, число в знаменателе формулы умень­ шится в 100 раз. Значит, правая часть равенства останется равна левой, если вместе с переходом от измерения радиуса в сантиметрах к его измерению в метрах знаменатель формулы будет умножен на число 100. Это число равно числу единиц СГС (сантиметров) в еди­ нице СИ (в метре) и указано в таблице,

Единица силы тока в системе СИ (ампер) в 3-109 раз больше, чем в гауссовой системе единиц. Подставив в правую часть формулы силу тока в амперах, мы уменьшим правую часть в 3 - ІО9 раз и дол­ жны умножить ее на это число, чтобы сохранить прежнее значение. Рассуждая аналогичным образом, найдем, что все величины, вхо­ дящие в формулу, написанную в гауссовой системе единиц, могут быть заменены на соответствующие величины в системе СИ, если умножить последние на численные коэффициенты, приведенные в по­ следней графе таблицы. Имеем, следовательно,

Я- 4л • 10-®

2 / • 3 • 1 0 »

3 10“ • г 100

или

 

 

Н = 2 л

(в системе СИ).

II.СВОБОДНЫЕ И ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ

ВКОЛЕБАТЕЛЬНОМ КОНТУРЕ

§1. Свободные колебания в контуре

Рассмотрим контур, состоящий из последовательно соединенных катушки индуктивности L, конденсатора С и сопротивления R (рис. 297). Обозначим разность потенциалов на конденсаторе черезI7,