ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 16.10.2024
Просмотров: 130
Скачиваний: 0
от цели создает разонаисное напряжение на контуре. Разностные ча стоты в каналах первого, второго и т. д. смесителей
г |
I А/ |
т,[ |
_f |
I 1 |
f I А/ 2ти __f , |
2 |
|||
/ 0 1 |
Тп |
п |
— /о |
Н |
т„ |
> / 01 |
---------------------- / 01 |
-------- II т. д . |
|
|
|
|
|
Тц |
п |
Хп |
в течение большей части длительности импульса существенно расстрое ны относительно резонансной частоты контура. Если сигнал от цели В приходит с запаздыванием (/п -+- ѵ/я) т„, где ѵ < п — целое число, то максимальный радиоимпульс будет на выходе ѵ-го смесителя. Со
отношения между |
частотами иллюстри |
|
|
|
|
||||||
руются на рис. 1.4.29. |
|
|
Ц е л ь |
а |
|
|
|||||
|
|
|
. Цель В |
|
|||||||
В состав индикатора входит электрон |
|
|
|||||||||
ный коммутатор, поочередно подклю |
|
|
|
|
|||||||
чающий к выходному усилителю детек |
|
|
|
|
|||||||
торы |
каждого из п |
каналов на время |
|
|
|
|
|||||
т и/п; |
весь цикл коммутации происходит |
|
|
|
|
||||||
за время т„. |
Фаза |
коммутации |
подби |
|
|
|
|
||||
рается так, чтобы подключение осу |
|
|
|
|
|||||||
ществлялось в момент максимума напря |
|
|
|
|
|||||||
жения на резонирующем контуре. На |
|
|
|
|
|||||||
выходе коммутатора |
получается |
такое |
|
|
|
|
|||||
же напряжение, как если бы сразу из |
|
|
|
|
|||||||
лучались импульсы длительностью x j n . |
|
|
|
|
|||||||
Подобные системы предлагались не |
|
|
|
|
|||||||
зависимо друг от друга В. М. Свистовым |
|
|
|
|
|||||||
в 1952 г., |
автором |
данной |
работы и |
Рис. |
1.4.29. К |
вопросу о рас |
|||||
Ю. А. Мантейфелем |
в 1955 |
г. Система |
|||||||||
пределении отраженных от це |
|||||||||||
В.М. Свистова была рассчитана на соп |
лей |
колебаний |
по |
каналам |
|||||||
ровождение одной цели. Чтобы просмат |
схемы (см. рис. |
1.4.28). |
|||||||||
ривать все |
цели, |
В. |
М. Свистов |
пред |
|
|
|
|
лагал вручную менять задержку закона модуляции гетеродинного
напряжения |
от 0 |
до т„, хотя и упоминал о возможности перехода |
к многоканальным |
системам. Система, предлагавшаяся автором дан |
|
ной работы, |
представлена на рис. 1.4.28. Система Ю. А. Мантейфеля |
в отличие от изображенной на рис. 1.4.28 не содержала электронного коммутатора, а предусматривала объединение нагрузок детекторов с целью взаимного подавления пассивных помех в различных кана лах. При этом теряется разрешающая способность, которую можно восстанавливать искусственным путем.
Перечисленные методы приема характеризуются наличием частот- но-модулированиых гетеродинов и могут быть названы гетеродинны ми. Для одновременного просмотра всей дальности в режиме обзора гетеродинные схемы должны быть многоканальными. Число каналов растет с увеличением укорочения, что ограничивает исполь зование гетеродинных методов. В режиме сопровождения одной или
небольшого числа целей |
г е т е р о д и н н ы е с х е м ы |
п р и е м а |
|
н е т р е б у ю т |
б о л ь ш о г о ч и с л а к а н а л о в . |
При про |
|
смотре же в с е й |
дистанции п р е д п о ч т и т е л ь н е е |
с х е м ы |
|
с о п т и м а л ь н ы м и |
ф и л ь т р а м и. |
|
§ 1.4.6. |
85 |
§ 1.4.7. ОПТИМАЛЬНАЯ ФИЛЬТРАЦИЯ НЕКОТОРЫХ РАЗНОВИДНОСТЕЙ ШИРОКОПОЛОСНЫХ РАДИОСИГНАЛОВ
Условие постоянства амплитуды в пределах зондирующего радио импульса, облегчающее конструирование передатчика, выполняется для произвольных колебании вида
и = |
U cos [2лfQt + ер (^)І. |
(1) |
|||
Величину |
|
|
|
|
|
f |
I |
1 |
dcp |
f |
(2) |
/ о 1 |
_ |
,, |
|||
|
|
2л |
dt |
|
|
можно рассматривать как мгновенную частоту сигнала. |
|||||
Наряду с плавным изменением фазы сигнала ф (t), |
рассмотренным |
ранее, возможно линейно-ломаное, соответствующее ступенчатому изменению частоты. Примером может служить хотя бы закон измене ния фазы сигнала (см. рис. 1.4.21). Оптимальная обработка такого сигнала может быть осуществлена фильтром с «контурным съемом». Возможен неоптпмальный прием путем некогереитного суммирова ния продетектированных импульсов приемных каналов, оптимальных для отдельных участков их спектра (канально-оптимальный прием).
Наряду с плавным и линейно-ломаным возможно ступенчатое из менение фазы, т. е. изменение частоты по закону суммы дельта-функ ций:
f ( 0 = fo + i - I ä ( i - ^ A V i . |
(3) |
|
ZJT |
i |
|
Уравнение (3) соответствует фазомаинпулпрованному колебанию с из менениями фазы на Дфг в моменты времени Д-.
Ниже рассматриваются некоторые возможные пути использования фазовой манипуляции в передатчике радиолокатора:
а) хаотическая фазовая манипуляция; б) фазовая манипуляция, аппроксимирующая закон частотной моду
ляции; в) фазовая манипуляция по равномерным и, в частности, по коррек
тирующим кодам.
Получение хаотической фазовой манипуляции можно представить, напри мер, следующим образом. Пусть имеется М передатчиков, работающих на одной и той же частоте f0, и эти передатчики последовательно один за другим создают радиоимпульсы длительностью т0 со случайными начальными фазами. Общая длительность импульса получается равной тн = Мт0.
В процессе приема возможна оптимальная фильтрация полученного состав ного радиоимпульса как единого целого, если взаимные разности фаз запоми наются при излучении (с тем, чтобы реализовать оптимальное суммирование). Это может быть осуществлено, например, путем:
1)использования синхронного детектирования в момент излучения;
2)получения М пар видеоимпульсов, амплитуды которых пропорциональ ны синусу и косинусу угла сдвига фаз каждого излучаемого элементарного им пульса относительно опорного напряжения;
3)растяжения этих видеоимпульсов на весь период посылки для управле ния соответствующими фазовращателями;
86 |
§ 1.4.7. |
4) оптимального суммирования М сдвинутых по времени и совмещенных по фазе составных радиоимпульсов.
Разрешающая способность по дальности при таком методе будет определять ся величиной, меньшей чем сти/2 = /Ист0/2, так как основной пик длительностью
т0 |
получается с и н ф а з и ы м суммированием М импульсов длительностью т0, |
|||
а |
боковые |
выбросы — за счет |
х а о т и ч е с к о г о (по фазе) суммирования |
|
меньшего числа импульсов той |
же длительности. Отношение |
амплитуды основ |
||
ного пика |
к среднеквадратическому значению соседнего |
пика составляет |
МГ\/М — 1. Чем больше М, тем меньше уровень «остатков». Описанная обра ботка применима, например, при использовании независимых маломощных ге нераторов, излучающих иекогерентные импульсы [22].
Перейдем к рассмотрению возможностей фазовой манипуляции, аппроксимирующей закон частотной модуляции. Будем исходить нз кривой изменения фазы в функции времени (рис. 1.4.30) при линейной частотной модуляции, дающей, как известно, сравнительно равно мерный спектр*). Отмечая точки на кривой cp (t), соответствующие зна чениям фазы, кратным я, проведем аппроксимирующую ломаную линию, соответствующую ступенчатому закону изменения фазы, с не кратными длительностями участков радиоимпульсов между двумя со седними ее коммутациями.
На рис. 1.4.31, а показан модулирующий множитель, преобразую щий колебание несущей частоты в фазоманипулированное колебание.
Рис. 1.4.31, б поясняет графический расчет огибающей напряжения на выходе оптимального фильтра в произвольный момент времени 4 как алгебраической суммы положительных и отрицательных отрезков Wlt W4, \Ѵ3. Можно показать, что этот расчет с точностью до множи теля соответствует формуле [(34), § 1.1.3].
На рис. |
1.4.31, в показан результат оптимальной фильтрации. Оп |
|
тимальный |
фильтр может |
быть реализован в виде линии задержки |
с двуполярными съемами, |
подведенными к колебательному контуру. |
Временную задержку, соответствующую расстоянию между съемами, целесообразно выбрать кратной периоду колебаний высокой частоты. Если на линию действует короткий импульс, снимаемый с первого от вода, задержанный импульс возбуждает колебания контура. Снимае мый со второго отвода импульс должен погасить эти колебания и воз будить колебания в противофазе**).
Одним из возможных методов фазовой манипуляции является ме тод манипуляции по равномерным корректирующим кодам, рекомен дуемый для временных измерений [29, 30]. Корректирующие коды были введены Шэнноном, Хеммингом, Элайсом, Вагнером, Хаффмэном и др. с целью обнаружения и исправления ошибок передачи информа ции [26, 27]. В корректирующих кодах добавляются избыточные сим волы, позволяющие обнаружить ошибки в определенном числе симво лов и исправить ошибки меньшей кратности. Использование равно мерных кодов для временных измерений имеет свою специфику.
*) Подобный переход к фазоманипулированным колебаниям от частотномодулированных с равномерным спектром часто используется в последнее вре мя рядом исследователей [77, 93, 131].
**> Описываемый способ не является единственно пригодным для формирования импульсной характеристики с использованием съема на контуры.
§ 1.4.7. |
87 |
r„
Рис. 1.4.30. Пояснение возможности подбора закона фазовой манипуляции как аппроксимации закона изменения фазы частотпо-модулированного колебания.
88
§ 1.4.7.
И н т е г р а л ь н о е в ы р а ж е н и е э ф ф е к т а ф и л ь т
р а ц и и |
[(34), § 1.1.3] |
применительно |
к сигналу из дискретных |
элементов |
переходит |
в |
|
|
|
= |
(4) |
іц,
где Ѵѵ_(і — элементы импульсной характеристики оптимального филь тра. При оптимальной фильтрации
Кѵ=у40?в_ѵ, |
(5) |
где А и л’о — постоянные. Величину ѵ0 можнопринять для определен ности равной числу М элементов кода (фильтр с минимальной задерж
кой), |
а А = 1. Из соотношений (4) и (5) |
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
Wv = |
2 |
2 |
U\x Ujl-v+м- |
|
|
|
|
(6) |
|||||||
|
|
|
|
|
|
|
n=i |
|
|
|
|
|
|
|
|
|
|
|
|
П и к о в ы й |
о т к л и к |
имеет место для ѵ = |
М и будет |
|
|||||||||||||||
|
|
|
|
|
|
|
1 |
м |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 | С Ѵ І 2. |
|
|
|
|
|
|
(7) |
||||
Его величина равна М, |
если значения Uß равны + 1 |
или —1. |
|
||||||||||||||||
Б о к о в ы е |
в ы б р о с ы расположены симметрично по обе сто |
||||||||||||||||||
роны от основного пика, |
поскольку |Wai_ x| = |
\Wm+>.I- |
Желательно |
||||||||||||||||
обеспечить м и н и м а л ь н о е |
з н а ч е н и е |
с у м м ы |
к в а д р а |
||||||||||||||||
т о в а м п л и т у д в ы б р о с о в * 1 |
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
ЛІ— 1 |
|
AI— 1 / |
V |
|
|
|
|
\ |
/ |
V |
|
|
|
|
|
|
|
|
S = 2 |
I Wv|2 = 2 |
|
2 |
uß ^ -ѵ + м |
|
2 |
Ui Ux-v+м |
|
||||||||||
|
|
V = 1 |
|
Ѵ = І \ ц = 1 |
|
|
|
|
/ \ X = I |
|
|
|
|
|
|
||||
AI— I |
V |
|
|
|
|
|
AI— I V— I |
AI — 1 |
|
|
|
|
|
|
|||||
- 2 |
|
2 |
j21Uß- V+MI2 + 2Re 2 |
2 |
|
|
2 |
|
Uß Ui Щ-ѵ+м Ux-v+M. |
||||||||||
v=l(i=l |
|
|
|
|
|
v= 1jx= 1Х=ц-(- 1 |
|
|
|
|
(8) |
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
Величина S тем меньше, чем больше число произведений, для которых |
|||||||||||||||||||
|
|
|
|
Uß U'x f/jt-v+Ai Ux-v+м = |
— 1 • |
|
|
|
(9) |
||||||||||
Например, при вещественных значениях |
Uц для |
М = |
4 желательно |
||||||||||||||||
выполнить соотношения: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
U ^ U a U ^ — 1 |
(Е = |
1, |
Я,= |
2, |
V = |
2 ; ц = |
1, |
Я,= |
3,ѵ = 3); |
|
||||||||
|
|
и г и і и 3= — \ |
( ji= l, |
Я,= |
2, |
V = |
3). |
|
|
|
|
|
|
||||||
|
|
и г и%иі = — 1 |
(p. = |
2, |
Х —3, V = |
3). |
|
|
|
|
|
|
|||||||
Все |
эти соотношения |
выполняются, |
если |
U1Ui = |
—1, |
U2U3 = |
1 |
||||||||||||
и U2Ui = —1. Этому соответствует, например, код: |
U1 = |
1; U2 = |
1; |
||||||||||||||||
*> |
Другим |
целесообразным |
критерием |
является |
введенный впоследствии |
||||||||||||||
И. Н. Амиантовым [89] минимаксный критерий |
|
max | Wv | = |
min. |
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
AI |
|
|
|
|
|
|
§ 1.4.7. |
89 |