Файл: Журавлев, Ю. П. Системное проектирование управляющих ЦВМ.pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 16.10.2024
Просмотров: 111
Скачиваний: 0
Существующие уровни развития науки и техники, а также возможности промышленности, большое коли чество противоречивых требований, предъявляемых к системам, приводит к тому, что процесс проектирова ния последних заключается в решении сложных экстре мальных задач.
Сложность рассматриваемых систем в значительной мере увеличивает трудности, стоящие на пути решения этих задач, поэтому проектирование системы сводится, как правило, к координированному проектированию от дельных ее основных частей. Каждая из основных частей исходной системы рассматривается при этом как система управления более низкого порядка. Ее назна чение совпадает с назначением соответствующей части исходной системы и описывается собственной целевой функцией, отражающей совокупность предъявляемых к ней основных требований. Координация проектирова ния основных частей базируется на том, что требования, предъявляемые к каждой из них, органически вытекают из требований, предъявляемых к исходной системе. Выявление требований, предъявляемых к каждой из основных частей системы, осуществляется на основе изучения балансов требований к системе.
Рассмотрим балансы некоторых требований. Обозначим:
L — задача, решаемая системой;
L3, Ly, L0 — задачи, решаемые задающей, управляю щей и объектовой частями соответственно;
Т — время, отводимое на однократное решение зада чи L;
Т3, Ту, То — время, отводимое на однократное реше ние задач L3, Ly, Ь0 соответственно;
о — значение среднеквадратической ошибки системы; сг3, сгу, сг0 — значения среднеквадратических ошибок задающей, управляющей и объектовой частей системы
соответственно; Н — вероятность бесперебойной работы системы за
время Т\ Нэ, Ну, Н0— вероятности бесперебойного функцио
нирования задающей, управляющей и объектовой частей за время Т.
Под балансами требований в системе следует по нимать функциональную связь между требованиями, предъявляемыми к каждой отдельной ее части,
Баланс времени. Баланс времени отражает функцио нальную связь между временными интервалами про хождения информации через все звенья системы.
В системах с обратной связью решение задачи осу ществляется путем многократного повторения циклов управления и поскольку управляющая часть системы представляет собой (конечно, в некотором приближе нии) дискретный ключ, то время одного цикла управ ления в предположении, что задающая и объектовая части являются непрерывными звеньями системы, опре деляется в соответствии с выражением T = T Y.
Время Т в системах с непрерывными задающей и объектовой частями, как правило, в явном виде на эта пе разработки требований, предъявляемых к системе, не задается. Чаще всего задаются частотные свойства объектовой части, т. е. собственно управляемых объек тов. Поэтому при использовании в управляющей части системы ЦВМ и других дискретных устройств возникает вопрос согласования частотных свойств непрерывной части системы с полосой пропускания ее управляющей части. Если такое согласование удовлетворяет теореме В. А. Котельникова, то динамические свойства управ ляющей части ‘близки к динамическим свойствам непре рывного звена.
При определении периода Ту выработки управляю щих воздействий (одного цикла управления) удобно задающую и объектовую части системы рассматривать совместно как ее непрерывную часть, а управляющую
часть системы — как |
нелинейный дискретный |
фильтр |
с запаздыванием (см., например, [6]). |
состав |
|
Пусть f — частота |
самой высокочастотной |
ляющей сигналов на выходе непрерывной части систе мы, тогда
Гу< 1/2/.
Баланс ошибок. Баланс ошибок отражает влияние ошибок, вносимых каждой из основных частей, на об щую ошибку системы. Как правило, ошибки системы и отдельных ее частей указываются в виде среднеквадра тических значений.
Если ошибки, вносимые основными частями, неза висимы, то баланс ошибок в системе описывается вы ражением
1 |
Г 2 |
, |
2 |
, |
2' |
з = 1 / з - 4 |
- з Ч - з . |
||||
" |
У |
1 |
3 |
1 |
о |
3; |
35 |
Баланс надежности. Для последовательных систем, как известно, баланс надежности описывается выраже нием
Я = Я3ЯУЯ0,
причем для сложных последовательных систем распре деление вероятности безотказной работы системы при ближается к экспоненциальному.
Баланс стоимости. Баланс стоимости отражает сово купность потребляемых системой экономических ресур сов, выраженных в денежных единицах:
5 (Т) = S 3+ 5 y+ 5 0.
Здесь Т — время «жизни» системы, т. е. общее время ее эксплуатации, a S(T), Ss, S Y, S 0 — затраты на изго товление, амортизацию и эксплуатацию соответственно всей системы, а также ее задающей, управляющей и объектовой частей. Приведенное выражение справедли во, если функциональное и топологическое деления си стемы на части совпадают. В других случаях это выра жение несколько видоизменяется.
Балансы других требований обычно не составляются.
На |
основе |
балансов |
основных требований могут |
быть |
выявлены |
основные |
требования, предъявляемые |
к каждой основной части системы. В частности, требо вания, предъявляемые . к управляющей части системы, определяются на основе следующих выражений:
Гу<1/2/; |
= |
Яу = Я/Я3-Я0; |
|
Sy = S(T) — Sa — S0. |
Как видно из приведенных соотношений, чтобы вы явить характер требований к управляющему звену, необходимо прежде всего знать требования к системе, а также к ее задающей и объективной частям.
На практике системы управления проектируют обыч но для разработанных уже объектовых частей с тенден цией к использованию в качестве задающих частей серийно изготавливаемую промышленностью аппарату ру. В этих условиях выявление требований к управляю щей части системы, как правило, не представляет боль ших трудностей. Если же в проектируемой системе все основные ее части разрабатываются заново, то априор ные балансы требований стремятся составить так, что-
36
бы максимально удовлетворялись требования к системе в целом. При этом, разумеется, в процессе координиро ванного проектирования системы эти балансы могут уточняться с поправкой на практически получаемые результаты.
Таким образом, процесс проектирования дискретной управляющей части сложной системы автоматического управления необходимо начать прежде всего с выявле ния основных требований, которые в совокупности отра жают ее целевую функцию.
§ 1.5. КРИТЕРИИ ОЦЕНКИ ЭФФЕКТИВНОСТИ ЦВМ
Качество работы управляющих и универсальных ЦВМ и их приспособленность к решению задач того или иного класса определяются прежде всего основными техническими характеристиками:
— внутренним языком машины (т. е. системой команд, системой адресов и системой форматов команд),
—разрядностью и формой представления чисел,
—емкостью оперативных и внешних ЗУ,
—емкостью и пропускной способностью буферных ЗУ, а также других устройств ввода и вывода инфор мации,
—быстродействием,
—надежностью работы и т. д.
Каждая из перечисленных технических характери стик может рассматриваться как частный критерий оценки эффективности ЦВМ, поскольку любая из них в той или иной мере характеризует качество работы машины.
Пользоваться частными критериями на этапе проек тирования машины крайне трудно, так как, во-первых, каждый из них не отражает в явном виде качества работы ЦВМ, а во-вторых, выбрать оптимальное реше ние непросто из-за большого количества таких крите риев. Поэтому возникает задача разработать обобщен ные критерии, наиболее полно отражающие зависимость качества работы ЦВМ от совокупности ее технических характеристик. К таким критериям можно отнести:
—производительность,
—цену эффективного быстродействия,
—себестоимость однократного решения некоторой задачи и др.
37
а) |
Производительность — показатель |
технического |
совершенства ЦВМ. Производительность — это обобщен |
ный показатель технической эффективности ЦВМ, зави сящий от совокупности основных технических характе ристик машины и учитывающий приспособленность последней к решению задач того или иного класса и условия эксплуатации машины. Этот показатель должен быть таким, чтобы с его помощью можно было оцени вать различные ЦВМ. Ясно, что не имеет смысла оце нивать работу различных ЦВМ безотносительно к ре шаемым задачам, поскольку очень часто возникают такие ситуации, когда из двух ЦВМ одна обладает большей производительностью при решении задач од
ного класса |
и меньшей — при решении задач другого |
класса. |
|
Задачу, относительно которой оценивается произво |
|
дительность |
ЦВМ, будем называть э т а л о н н ой. Для |
управляющих ЦВЛ1 эталонной задачей является задача управления объектами системы; для ЦВМ широкого назначения эталонной задачей может служить любая вычислительная или логическая задача. В некоторых случаях сравнительную оценку универсальных ЦВМ широкого назначения можно производить относительно
некоторой |
условной |
эталонной |
задачи, |
объединяющей |
||||||||
в себе основные особенности некоторого множества |
||||||||||||
классов задач. |
|
|
|
|
|
|
|
|
|
|
||
Таким образом, под эталонной задачей L3 понимает |
||||||||||||
ся задача, для которой задано: |
|
|
|
|
|
|||||||
|
|
|
R2 (N2 ) ^ Q ( L 3 ) Ri (Ni), |
|
|
|
||||||
Q(L8)~Qi(ai, |
Pi, |
...)Й2(а2, |
p2, |
...) |
. . . Q m(am, |
pm, |
...), |
|||||
|
|
|
|
|
■Ri(Ni) = const, |
|
|
|
|
|||
где Q(La) — операторная |
схема |
вычислительного |
про |
|||||||||
цесса, |
|
p, |
. . . ) — операторная |
схема /-го участка |
||||||||
вычислительного процесса |
(t= l, |
2, |
... , т); Ri(Ni) — |
|||||||||
исходная |
числовая |
информация; R2(АД — результаты |
||||||||||
вычислений; |
N u N2 |
— количество |
чисел, входящих соот |
|||||||||
ветственно |
в RiiNi) |
и R2 (N2); |
а<, |
р,- |
. . . — параметры |
|||||||
i'-го участка вычислительного процесса. |
|
|
|
|||||||||
Такое определение эталонной задачи предполагает |
||||||||||||
следующее: |
|
|
|
|
|
|
|
|
|
|
|
|
а) |
выбраны |
численные |
методы |
решения |
задачи и |
|||||||
составлена операторная схема вычислительного процес |
||||||||||||
са Q(L3) |
(или блок-схема алгоритма); |
|
|
|
38
б) известны объемы входной, промежуточной и вы ходной информации;
в) для заданной системы команд ориентировочно могут быть оценены емкость памяти и общее количество машинных операций, необходимые для решения задачи.
П о д п р о и з в о д и т е л ь н о с т ь ю W понимается количество решаемых машиной в единицу времени эта лонных задач в режиме ее нормальной эксплуатации, считая, что процесс решения задачи управляющей ЦВМ начинается с момента ввода исходной информации, а процесс решения задачи универсальной ЦВМ широ кого назначения начинается с момента ввода исходной информации и программы и заканчивается выдачей окончательных результатов, т. е.
W= 1/Тэ, |
(1.1) |
где Гэ — время решения эталонной задачи. Пусть
Твв — время ввода программы и исходного числового материала,
То — время собственно решения задачи,
Тг — время, |
расходуемое на обмен информацией |
между оперативным и дополнительными ЗУ, |
|
Т’выв — время |
вывода результатов решения задачи, |
Тк — время |
контроля функционирования машины |
с помощью тестов, периодически выполняемых в про цессе решения задачи,
Tv — время, расходуемое на профилактические осмот ры и ремонты, на поиск и устранение неисправностей и приходящееся на однократное решение эталонной за дачи,
ей С2 — коэффициенты совмещения соответственно ввода и вывода информации с процессом решения за дачи.
Тогда время решения эталонной задачи может быть записано следующим образом:
Тэ — Твв(1—ei) + 7с+ 7’г+ 7’к+ 7’р-}-7'выв(1—ег). (1.2)
Полагая 7р = р7’э, из (1.1) и (1.2) получаем
W = 7 .. (1 - . ,) + Та+ Тт+ Тх + Гвы (1 - в1) * 1--3)
39
Выразим составляющие времени через параметры эталонной задачи и основные технические характеристи ки машины:
1) |
7'BB=(yV1 + yVnp)/l/BB, |
(1.4) |
где Nь А^пр — соответственно |
количество исходных чисел |
|
и объем программы эталонной задачи; |
||
2) |
TC= NJV. |
(1.5) |
Здесь Nс— количество машинных операций в развер нутой программе вычислений, необходимое для выполне ния собственно решения задачи, а V — быстродействие, определяемое по формуле
(/)
где Pi, tj — соответственно частота и длительность вы полнения /-й машинной операции;
3) в общем случае проектируемая ЦВМ может иметь несколько внешних запоминающих устройств (ВЗУ). Об мен информацией между оперативным запоминающим устройством (ОЗУ) и любым из ВЗУ можно осущест влять по-разному.
Обозначим:
Zlv — общее количество чисел и команд, пересылае
мых в ОЗУ из v-ro ВЗУ;
Z2v — общее количество чисел и команд, пересылаемых
из ОЗУ в v-e ВЗУ; |
|
|
|
sv — номер текущего обращения к v-му ВЗУ для |
счи |
||
тывания с него |
информации в ОЗУ (sv= 1,2, |
cv); |
|
s*v — номер |
текущего обращения к v-му |
ВЗУ |
для |
записи на него информации из ОЗУ (s*v= 1,2, ..., c*v); |
|||
Q3 — общая |
емкость памяти ЦВМ, необходимая для |
||
решения задачи; |
|
|
|
Q0 — емкость ОЗУ, |
|
|
|
р v — часть |
объема информации (Q3 — Q0), |
не помес |
тившейся в ОЗУ, размещенная на дополнительном ЗУ с номером v,
7tSv — коэффициент, определяющий ту часть от объема р ч (Q3 — Q0) информации, которая пересылается из v-ro ВЗУ в ОЗУ при s v-m обращении к ВЗУ;
40