ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 21.10.2024
Просмотров: 62
Скачиваний: 0
где | — упругая энергия образца; А — площадь поверхности трещины; Г — характеристическая энергия на единицу площади. Знак Т показывает, что внешняя работа проделана системой во время внутреннего обмена энергии между телом в целом и тре щиной.
С физической точки зрения величина (—d^/dA) обозначает поле напряжений (интенсивность и геометрию) вокруг трещины. Зна чение параметра Г для большинства эластомеров практически постоянно при условии постоянства скорости и температуры испы таний. Для стеклообразных полимеров Г = 105 ч- 107 эрг/см2.
Уравнение для величины Г в за висимости от скорости распростране ния трещины при некоторой постоян ной температуре имеет вид
|
|
|
|
|
__ = о Г л |
' |
|
|
|
|
|
|
dt |
qL |
|
|
|
|
где |
|
q — некоторая температурная |
||
|
|
|
функция и п — показатель степени; |
||||
|
|
|
для резин из НК |
п |
2, а для сти- |
||
|
|
|
ренбутадиеновой резины п 4. |
||||
|
|
|
|
Р а с ч е т д о л г о в е ч н о с т и |
|||
|
|
|
п р и |
д и н а м и ч е с к о м н а |
|||
Рис. |
73. |
Рост усталостной тре |
г р у ж е н и и . В большинстве слу |
||||
щпны |
в |
вулканизатах на ос |
чаев |
стационарного |
циклического |
||
|
|
нове НК |
нагружения разрушение резинового |
||||
ния и развития трещин. |
образца происходит от возникнове |
||||||
При |
стационарном |
распределении на |
|||||
пряжений рост трещины |
Дс |
от |
первоначальной длины с0 при |
||||
единичном цикле нагрузки подчиняется закону |
[84] |
|
Дс ^ р (dl/dA)2;
- ( 4 ) < г -
где р — постоянная.
Каждый последующий цикл деформации увеличивает трещину на Дс и трещина развивается от с0 до некоторого конечного раз мера с. В этом случае при условии, что усталость не зависит от скорости нагружения справедливо уравнение
dc |
-- p k * C * W * , |
(3.96) |
|
dN |
|||
|
|
где N — количество циклов до разрушения образца.
Если длина трещины с оо, то из уравнения (3.96) следует
N = (pk*W4Q)-i.
120
При зависимости усталости от скорости |
|
Лт= (п — I)’ 1 |
(3.97) |
где t — время единичного цикла. |
экспериментах |
Параметры р а к могут быть получены при |
на моделях с искусственной трещиной длиной с0, которая может быть найдена по независимым экспериментальным данным из цикла до разрушения систе
мы. На рис. 73 показана за |
V , м м /с |
|
|
|||||||
|
|
|
||||||||
висимость длины трещины от |
|
|
|
|||||||
числа |
|
циклов |
для образцов |
|
|
|
||||
из НК. Используя наклон |
|
|
|
|||||||
этой |
зависимости |
и число |
|
|
|
|||||
циклов до разрушения без |
|
|
|
|||||||
дефектного образца, |
получим |
|
|
|
||||||
естественный |
(т. е. |
суще |
|
|
|
|||||
ствующий в |
образце до при |
|
|
|
||||||
ложения напряжений) раз |
|
|
|
|||||||
мер трещин порядка 10_3 см |
|
|
|
|||||||
[85]. |
|
|
|
|
|
|
|
|
|
|
Такой размер трещин удо |
|
|
|
|||||||
влетворительно |
|
согласуется |
|
|
|
|||||
с размерами |
дефектов, |
воз |
|
|
|
|||||
никающих |
в |
резинах |
при |
|
|
|
||||
вулканизации, |
вырубке |
об |
|
|
|
|||||
разцов |
или |
при локальных |
|
|
|
|||||
напряжениях, вызванных на |
|
|
|
|||||||
личием |
в материале |
приме |
|
|
|
|||||
сей и различных неоднород |
|
|
|
|||||||
ностей. |
|
|
|
энергии Г, |
|
|
|
|||
Минимальной |
|
|
|
|||||||
необходимой |
для |
иницииро |
|
|
|
|||||
вания роста трещин, |
соответ |
Рис. 74. Зависимость |
скорости распро |
|||||||
ствует |
|
некоторый |
предел |
странения трещины |
от |
времени для |
||||
усталости при напряжениях, |
резины на основе |
НК |
||||||||
ниже |
которых |
в |
отсутствие |
|
|
|
||||
химического |
воздействия |
долговечность образца становится прак |
||||||||
тически бесконечной. |
В этом случае |
|
|
|||||||
|
|
|
|
|
|
|
2kWf**— . |
|
|
|
|
|
|
|
|
|
|
|
со |
|
|
Если |
с0 = 10_3 |
см и Г = 104 ч- 10е эрг/см2, то |
для |
коэффици |
ента к получим значение порядка я.
К и н е т и к а р а с п р о с т р а н е н и я т р е щ и н в р е з и н а х. Этот вопрос является частью общей проблемы проч ности и разрушения резин. Ранее [69] аспекты распространения трещин подробно рассматривались для тонких полимерных
121
пленок. Здесь эти материалы приведены для определения расчетных коэффициентов и выявления общих закономерностей разрушения резин от интенсивности механического воздействия.
Исследование роста трещин проводилось на образцах из резин на основе слабонаполненного каучука СКИ-3 и высоконаполнен-
ного (50 |
весовых |
частей |
сажи) натурального |
каучука. Образцы |
|||||||||||
to!} и, мм/с |
|
|
|
|
|
имели |
форму |
двусторонней |
ло |
||||||
|
|
|
|
|
патки длиной |
115 мм и шириной |
|||||||||
|
|
|
|
|
|
|
рабочей части 20 мм. Перед испы |
||||||||
|
|
|
|
|
|
|
таниями на |
образцах наносился |
|||||||
|
|
|
|
|
|
|
бритвенный надрез |
длиной 2 мм в |
|||||||
|
|
|
|
|
|
|
середине рабочей части. |
Образцы |
|||||||
|
|
|
|
|
|
|
подвергались |
многократным цикт |
|||||||
|
|
|
|
|
|
|
лическим деформациям на дина |
||||||||
|
|
|
|
|
|
|
мическом стенде |
при постоянной |
|||||||
|
|
|
|
|
|
|
частоте |
со = |
510 об/мин |
и |
раз |
||||
|
|
|
|
|
|
|
личных амплитудах от 20 до 10 мм |
||||||||
|
|
|
|
|
|
|
через каждые 2 мм. |
Рост |
трещин |
||||||
|
|
|
|
|
|
|
фиксировался при помощи фото- и |
||||||||
|
|
|
|
|
|
|
киноаппаратуры. |
|
|
|
|
||||
|
|
|
|
|
|
|
|
По |
данным |
измерений были |
|||||
|
|
|
|
|
|
|
построены временные зависимости |
||||||||
|
|
|
|
|
|
|
скорости распространения трещин. |
||||||||
|
|
|
|
|
|
|
На |
рис. 74 |
представлена кривая |
||||||
|
|
|
|
|
|
|
изменения скорости распростране |
||||||||
|
|
|
|
|
|
|
ния трещин |
от |
времени для |
ре |
|||||
|
|
|
|
|
|
|
зины на основе НК. Эта кривая |
||||||||
|
|
|
|
|
|
|
является характерной для иссле |
||||||||
|
|
|
|
|
|
|
дованных образцов |
на основе на |
|||||||
Рис. 75. Зависимость логарифма |
турального и изопренового каучу |
||||||||||||||
скорости |
распространения |
тре |
ков |
в пределах |
испытанных |
ам |
|||||||||
щины |
от |
времени для образцов |
плитуд. |
Развитие |
трещины вна |
||||||||||
резины на основе |
|
НК при |
раз |
чале происходит |
очень медленно; |
||||||||||
личных амплитудах: |
|
||||||||||||||
|
на |
рисунке |
это |
представляется |
|||||||||||
t — текущее время; т — долговечность; |
|||||||||||||||
1 — А = |
20 мм; |
2 — 18 мм; |
3 — |
частью кривой, |
проходящей почти |
||||||||||
16 мм; |
4 — 14 мм; |
5 — 12 |
мм; |
в — |
параллельно |
оси |
времени. По ме |
||||||||
|
|
10 мм |
|
|
|
||||||||||
скорость возрастает и |
|
|
ре |
увеличения |
|
длины |
трещины |
||||||||
при достижении определенной длины (ха |
|||||||||||||||
рактерной для каждой |
амплитуды) происходит |
резкое |
ее |
уве |
|||||||||||
личение. Максимальная скорость распространения |
трещины |
||||||||||||||
обычно |
на 2 —3 |
порядка превышает |
среднюю скорость на мед |
ленной стадии развития. Максимальная скорость является ве
личиной, характерной для |
типа |
резины и амплитуды динами |
|||
ческих |
испытаний. С увеличением |
амплитуды нагружения зна |
|||
чение |
максимальной скорости распространения трещины также |
||||
увеличивается. |
логарифма |
скорости распространения |
трещийр |
||
Зависимость |
|||||
во времени при |
различных |
амплитудах представляется |
в виде" |
122
ряда прямых, расположенных под различными углами. Графики на рис. 75 и 76 были построены без учета последней стадии раз рыва, где скорость оказывалась на несколько порядков выше средней скорости на стадии медленного развития трещины.
Изучение кинетики роста дефектов, инициированных бритвен ным надрезом, показало, что развитие трещин происходит в две
стадии, |
отличающиеся скоростями |
|
|
||||||
и топографией поверхностей раз |
|
|
|||||||
рушения. Первая стадия — мед |
|
|
|||||||
ленного |
|
развития |
трещин — ха |
|
|
||||
рактеризуется |
шероховатой |
по |
|
|
|||||
верхностью разрыва |
и временем |
|
|
||||||
развития |
тх. |
Вторая |
стадия |
— |
|
|
|||
быстрого |
разделения |
образца |
на |
|
|
||||
две части — характеризуется глад |
|
|
|||||||
кой поверхностью |
разрушения |
и |
|
|
|||||
временем |
развития |
трещины тп . |
|
|
|||||
На рис. 77 представлены ки |
|
|
|||||||
нограммы |
разрушения образцов |
|
|
||||||
испытываемых |
резин. |
На первой |
|
|
|||||
стадии |
разрушения |
происходило |
|
|
|||||
медленное развитие трещины (см. |
|
|
|||||||
кадры 1—5). При определенной |
|
|
|||||||
длине трещины скорость разру |
|
|
|||||||
шения |
достигала |
максимального |
|
|
|||||
значения |
и |
происходило прак |
|
|
|||||
тически |
|
мгновенное |
(примерно |
|
|
||||
за 0,02 с) |
разделение |
образцов на |
Рис. 76. |
Зависимость логарифма |
|||||
две части (кадр 6). |
|
|
об |
||||||
Общее |
время |
разрушения |
скорости |
распространения тре |
|||||
разцов т можно представить в виде |
щины от |
времени для образцов |
|||||||
резины на основе СКИ-3 при раз |
|||||||||
суммы трех слагаемых |
|
|
личных амплитудах: |
||||||
|
|
|
|
|
|
|
|
t — текущее время; т — долговечность; |
|
|
|
т — Tq-Ь ^1 + Hi> |
|
1 — А — 20 мм; 2 — 18 мм; з — 16 мм; |
|||||
|
|
|
4 — 14 мм; 5 — 12 мм |
||||||
где т0 — время, необходимое для |
формирования трещины; тг — |
медленная стадия развития трещины; тп — быстрая стадия раз вития трещины.
Если представить изменение скорости распространения тре щины по ее длине в полулогарифмических координатах (рис. 78), то на стадии медленного развития трещины эта зависи мость представляет собой прямую линию, проходящую под не которым углом к оси абсцисс. При достижении определенной длины трещины происходит скачкообразный переход к быстрой
сдадии развития, причем т: > тп.
~ В пределах исследованного диапазона амплитуд длительность быстрой стадии разрушения составляла примерно 10~2—10~3 с.
123
Рис. 77. Кинограмма раз рушения образцов резин на основе НК и СКИ-3 с пред варительным надрезом при амплитуде 18 мм:
а — 1 — т = 0; |
2 — 120 с; 3 — |
||
100 с; |
4 — 60 |
с; 5 — 60 |
с; |
6 — 0,1 |
с; б — 1 — х — 0; |
2 — |
20 с; з — 15 с; 4 — 10 с; 5 — 14 с; 6 — 0,02 с
Рис. 78. Зависимость ско рости распространения тре щины от ее длины для ре зины на основе НК при различных амплитудах:
1 |
— А — 20 |
мм; |
2 |
— 18 |
мм; |
з |
— 16 мм; |
4 — |
14 |
мм; |
5 — |
|
|
12 мм |
|
|
Экстраполяция прямых зависимости lg v (ZTp) позволяет полу чить значение скорости в начальный момент развития трещины v0. Анализ полученных экспериментальных данных позволяет сде лать вывод о наличии экспоненциальной зависимости скорости рости. трвхдины от ев длины первой стадии разрушения, т.
v = v0exp P2mp,
igv
Рис. 79. Схематическая зависимость |
Рис. 80. Зависимость длины шеро |
||||
скорости роста |
трещины в |
зависи |
ховатой зоны поверхности разру |
||
|
мости от ее длины: |
|
|
шения от долговечности резины: |
|
/ |
— длина шероховатой зоны; |
1Я— дли |
1 — резина на основе СКИ-3; 2 — резина |
||
на |
гладкой зоны; |
I — общая длина тре |
на основе НК |
||
щины; V0 — начальная скорость |
распро |
|
|||
странения трещины; с — скорость |
трещи |
|
|||
|
ны на второй |
стадии разрушения |
|
что согласуется с данными [69], полученными для полимерных
пленок.
В этой формуле (3 = tg а, где а угол наклона зависимостей
l g v(lrp)-
На рис. 79 показана зависимость логарифма скорости рас пространения трещины от ее длины при двухстадийном разруше нии. Отсюда долговечность образцов можно представить в виде
|
. |
lm |
dl |
|
I |
dl |
1 |
-рг,„ , |
1 |
, |
|
Г |
|
. (* |
|||||||
T - T j + |
Т ц — j |
р 0 exp pi |
+ J |
С |
|/<ф 0 |
+ |
Г 0р |
|
||
|
|
о |
|
|
lrri |
|
|
|
|
|
Здесь обозначения такие же, как на рис. 79. |
что |
для |
каждой |
|||||||
Анализ |
поверхности |
разрушения |
показал, |
|||||||
из резин |
в |
зависимости |
от |
амплитуды деформации изменяется |
125