Файл: Бриллюэн, Л. Новый взгляд на теорию относительности.pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 29.10.2024
Просмотров: 65
Скачиваний: 0
56 Глава 3
объяснить нам, почему |
эти |
соотношения именно |
такие |
|
и как их можно понять. Эти тождества: |
|
|||
энергия == масса = |
частота |
|
||
/ |
\ |
|
|
(3-5> |
Е |
= |
Мс2 |
|
|
с точностью до двух констант с |
и h — итог всех |
зако |
нов физики, и их невозможно вывести ни из одной существующей в настоящее время теории или модели. Это не результат, а исходный пункт нашего мышле ния. Смысл этой «троицы» все еще находится в глу
бокой |
тайне. |
|
|
|
|
|
|
В |
своей знаменитой |
работе, |
посвященной |
атому |
|||
водорода, Бор [4] сделал |
два фундаментальных |
пред |
|||||
положения: |
|
|
|
|
|
|
|
1) сформулировал несколько условий, определяю |
|||||||
щих устойчивые |
энергетические |
уровни; |
|
||||
2) |
сформулировал |
постулат |
(3.3) |
д л я |
частоты ѵ, |
||
испускаемой или поглощаемой при переходе ато |
|||||||
ма из одного энергетического состояния в другое. |
|||||||
Этот второй постулат |
Бора |
в ы д е р ж а л |
все |
бури, |
связанные с открытиями в физике за последние 55 лет. Не стоит снова подводить итог этому невероятному периоду истории науки, читателю можно лишь реко
мендовать |
прочесть |
замечательную |
статью |
Вайскоп- |
фа [6J. Подчеркнем, |
что боровское |
условие |
1) д л я |
|
устойчивых |
энергетических уровней |
с того |
времени, |
к а к оно было сформулировано, видоизменялось сотни раз, и его все еще необходимо почти к а ж д ы й год при спосабливать к новым экспериментальным откры тиям. Однако все фундаментальные законы, найден ные до настоящего времени, соответствуют следую
щим |
правилам: |
|
|
1) |
Устойчивые |
энергетические |
состояния суще |
ствуют на всех |
иерархических |
уровнях материи, |
|
хотя критерий |
устойчивости |
может изменяться, |
а сами состояния могут иметь неизвестную про должительность.
Гравитация и теория относительности |
57 |
2) Условие Бора (3.3) всегда дает частоту испу скаемого или поглощаемого излучения.
Условие 1) является настолько важным, что нам следует обсудить его сразу и процитировать некото рые выдержки из статьи Вайскопфа . Он напоминает
нам о существовании |
трех |
разделов |
спектроскопии: |
||||
I . Атомная |
или молекулярная спектроскопия с |
||||||
|
областью частот вплоть до |
частот рентгенов |
|||||
|
ских |
лучей |
(так |
н а з ы в а е м а я |
электронная |
||
|
спектроскопия). |
|
|
|
|||
П. Ядерная |
спектроскопия, включающая у-лучи и |
||||||
|
радиоактивность. |
|
|
|
|||
I I I . |
Спектроскопия |
резонансных |
(или |
возбужден |
|||
|
ных) частиц, открытых с помощью мощных |
||||||
|
ускорителей или в космических лучах. |
||||||
Во |
всех |
этих |
разделах |
спектроскопия |
имеет дело |
с системами стабильных энергетических уровней. Пе реход с одного уровня на другой может соответство
вать |
испусканию одной частицы ') с полной |
энергией |
Д £ |
(энергия покоя М 0 с 2 плюс кинетическая |
энергия) |
либо излучению фотонов или нейтрино с нулевой мас сой покоя.
Проиллюстрируем эти утверждения с помощью не скольких диаграмм, заимствованных из замечатель
ной статьи |
Вайскопфа . Н а |
фиг. 3.1 изображены, энер |
гетические уровни натрия: |
атомные (слева) и ядерные |
|
( с п р а в а ) . |
Поразительно и |
по существу неожиданно |
то, что в обоих случаях существуют узкие энергетиче ские уровни и что переход с одного энергетического уровня на другой дает характеристическую частоту атома. Электронные состояния вычислены в одноэлектронном приближении квантовой теории, ядерные со
стояния — путем |
квантования |
энергии |
системы |
про |
|
тона и нейтрона |
внутри |
ядра |
(это представляет |
зна |
|
чительно более |
трудную |
теоретическую |
з а д а ч у ) . |
Тем |
не менее мы получаем совокупности дискретных энер гетических уровней сходного характера . Это следует
• ') Или нескольких (например, резонансных) частиц. — Прим. ред.
58 Глава Я
подчеркнуть в связи с нашим анализом атомных часов.
Насколько необычайно ценна информация, кото рую заключают в себе такие диаграммы, можно ви деть из фиг. 3.2, где представлены ядерные энергети ческие уровни изотопа бора 5 В 1 0 и изображен ряд
|
|
|
Электронные |
|
Ядерные |
|
|
|
|
состояния натрия |
состояния натрия |
||
Ф и г . |
3.1. Диаграммы атомных |
и |
ядерных |
уровней натрия |
||
имеют |
сходный |
характер. |
|
|
|
|
Атомные |
уровни |
(слева) представлены |
на |
диаграмме |
в электронвольтах, |
|
в ядерные |
уровни |
(справа) —в единицах, |
в |
105 раз больших. |
переходов (больше тридцати), соответствующих излу чению квантов высоких энергий.
В дополнение к этим |
д и а г р а м м а м , |
относящимся |
к |
|
атомной |
спектроскопии |
(электронные состояния) |
и |
|
ядерной |
спектроскопии |
(ядерные |
состояния), |
на |
фиг. 3.3 |
изображена типичная д и а г р а м м а возбужден |
ных состояний для частиц высоких энергий, создавае мых с помощью мощных ускорителей. Здесь снова видны четкие энергетические уровни и многочислен ные экспериментально наблюдаемые переходы. Эта схема представляет собой замечательный пример квантовой классификации, но в настоящее время мы
(г;г,/)
Ф и г . 3.2. На диаграмме ядер ных уровнен бора 5 В 1 0 [6] по казаны основные переходы (вертикальные линии), при ко торых испускаются гаммакванты.
П е р в ая цифра справа возле |
каждого |
||||||
уровня |
обозначает спин, |
следующий |
|||||
символ |
( + |
или —) — четность, |
вто |
||||
рая |
цифра — изотопические |
с п и н / . |
|||||
Величины, |
взятые |
в скобки, |
е щ е |
||||
точно |
не |
установлены. |
Заштрихо |
||||
ванными полосами |
отмечены |
широ |
|||||
кие |
уровни . |
|
|
|
|
te. |
|
Ф и г . |
3.3. |
Диаграмма |
барионных |
|||||||||||||
|
|
уровней |
нуклонов(Р, |
N) |
и различ |
|||||||||||||
|
|
ных |
их |
возбужденных |
состояний |
|||||||||||||
|
|
[6]. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Состояния распределены по столбцам |
||||||||||||||||
|
|
соответственно |
их |
мультиплетности |
и |
|||||||||||||
|
|
странности . Символом / обозначен |
изо |
|||||||||||||||
|
|
топический спин ; мультнплетность рав |
||||||||||||||||
|
|
на |
|
2/ + |
1. |
|
Странность — специфическая |
|||||||||||
|
|
квантовая |
|
характеристика . |
|
Основному |
||||||||||||
|
|
состоянию |
|
на диаграмме отвечает |
энер |
|||||||||||||
|
|
гия 0,938 ГэВ, |
равная |
массе |
|
покоя |
про |
|||||||||||
|
|
тона. Числа слева от уровня указывают |
||||||||||||||||
|
|
спин |
и |
четность |
(+ |
или |
—). |
Символы |
||||||||||
|
|
справа |
обозначают |
состояния . |
Некото |
|||||||||||||
|
|
рые |
|
переходы |
с |
испусканием |
пионов |
|||||||||||
|
|
показаны сплошными линиями. Перехо |
||||||||||||||||
|
|
ды |
с |
излучением |
фотонов |
не |
показаны; |
|||||||||||
|
|
они |
|
обычно |
совпадают |
с |
переходами, |
|||||||||||
|
|
при |
которых |
испускаются |
нейтральные |
|||||||||||||
|
|
пионы. Штриховыми линиями обозначе |
||||||||||||||||
|
|
ны переходы, |
вызванные |
слабым |
взаи |
|||||||||||||
|
|
модействием, |
с испусканием |
пар лепто- |
||||||||||||||
|
|
нов или мюонов. Переходы |
возможны |
|||||||||||||||
|
|
из |
|
любого |
члена |
одного |
мультннлета |
|||||||||||
|
|
в любой |
член |
другого; |
для простоты |
по |
||||||||||||
|
|
казан |
только |
один такой |
п е р е х о д |
|
для |
|||||||||||
|
|
каждой |
пары |
состояний . Массы пионов |
||||||||||||||
|
|
и |
каонов |
показаны справа. |
Состояния |
|||||||||||||
|
|
в |
октете |
и |
д е к у п л е т е |
о б л а д а ю т |
опре |
|||||||||||
|
|
деленной |
|
внутренней |
|
симметрией . |
||||||||||||
|
|
Д л я |
каждого |
показанного |
на |
диаграм |
||||||||||||
|
|
ме барнонного состояния |
имеется |
анти- |
||||||||||||||
|
|
барионное |
состояние; |
таким |
образом, |
|||||||||||||
|
|
с у щ е с т в у е т |
аналогичная |
схема |
уровней |
|||||||||||||
Странность = 0 |
Странноапь=-І |
Странноипь'-Z Странность =-J аитибарионов . |
|
|
|
|
|
|
|
|
|
Гравитация и теория относительности |
61 |
не располагаем какой-либо законченной теорией, объ ясняющей существование таких уровней. З а более подробной информацией по этому вопросу мы отсы
лаем |
читателя |
к статье [6]. |
|
|
Из сказанного можно сделать вывод: наличие чет |
||||
ких |
дискретных |
энергетических |
уровней — это |
общее |
правило для атомных или ядерных состояний и |
д а ж е |
для состояний элементарных частиц. Объяснение этих энергетических уровней и их теоретическая интерпре тация пока что не являются законченными.
§ 5. Точность и надежность |
атомных часов |
|||
Атомных |
часов, |
в которых |
используется |
эффект |
Мессбауэра, |
как у ж е |
сказано, пока что не существует. |
||
Н о они в конечном |
счете будут созданы в погоне за |
|||
все более высокой точностью. |
|
|
||
Атомные |
часы, в |
которых используются |
наиболее |
подходящие спектральные линии оптического диапа
зона, позволяют получить точность |
не х у ж е |
Ю - 1 2 — |
|
10~13. Это означает, что их ошибка |
меньше |
одной |
|
миллисекунды в столетие. |
|
|
|
|
Используя эффект Мессбауэра, П а у н д продвинул |
||
ся |
намного д а л ь ш е — в его опыте ошибки были |
мень |
|
ше, |
чем Ю - 1 6 , т. е. составляли доли |
микросекунды в |
столетие. Чтобы построить часы, в которых исполь зуются эти чрезвычайно узкие линии, следовало бы преодолеть много технических трудностей. Во-первых, следовало бы разработать целый ряд умножителей и делителей частоты, охватывающих область от опти ческих и до частот Y-лучей. Во-вторых, потребовался бы целый ряд лазеров и нелинейных оптических при боров, которые пока еще могут работать не далее, чем в ультрафиолетовой области. Будем надеяться, что разработка таких устройств будет осуществлена в не очень далеком будущем . Это позволило бы нам вы полнить много в а ж н ы х экспериментов и определенно сказать, как оценивать теорию относительности.
Существующие в настоящее время часы, основан ные на оптических частотах, у ж е д а ю т замечательную точность. Рассмотрим, например, некоторые задачи