Файл: Г. В. Тягунов Безопасность жизнедеятельности.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 05.05.2024

Просмотров: 825

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Раздел 1 Теоретические основы БЖД

Основные понятия БЖД

Аксиома о потенциальной опасности деятельности

Структура курса БЖД

Понятие риска

Концепция приемлемого риска

Пути управления риском

Методические подходы к изучению риска

Последовательность изучения опасностей

Системный анализ безопасности

Общие принципы и механизмы адаптации организма человека к условиям среды обитания

Взаимосвязь человека с окружающей средой

Совместимость элементов системы «человек – среда»

Тяжесть и напряженность труда

Психические процессы, свойства и состояния, влияющие на безопасность труда

Работоспособность и ее динамика

Утомление

запредельные формы психического напряжения

Влияние алкоголя на безопасность труда

Основные психологические причины травматизма

Раздел 2 ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ БЖД

Законодательная и нормативно-техническая основа управления факторами среды

Роль атмосферы в жизни планеты

Состав атмосферы

Загрязнители атмосферы

Влияние химических веществ на живые организмы

Гигиеническое нормирование вредных веществ

Санитарно - защитные зоны (СЗЗ)

общая характеристика водных источников планеты

Загрязнители водных источников

Показатели качества воды

Категории водопользования

Влияние хозяйственной деятельности человека на состояние почвы

Основные загрязнители почвы

Обращение с отходами производства и потребления

Виды экологического мониторинга

Задачи системы экологического мониторинга

Основные разделы ОВОС

Определение платежей за загрязнение природной среды

Виды особо охраняемых территорий

Раздел 3 Безопасность в условиях производства(охрана труда)

Нормативные правовые акты, содержащие государственные нормативные требования по ОТ

Государственное управление охраной труда

Обучение, инструктирование и проверка знаний работников по охране труда на предприятии, в учреждении

Ответственность за нарушение норм охраны труда

Социальное страхование от несчастных случаев и профессиональных заболеваний

состояние воздушной среды производственных помещений

Виброакустические факторы

Электромагнитные поля Электромагнитное поле (ЭМП) представляет особую форму материи. Всякая электрически заряженная частица окружена электромагнитным полем. электромагнитное поле может существовать и в свободном состоянии в виде движущихся со скоростью 3·108 м/с фотонов или в виде электромагнитных волн.Движущееся ЭМП (электромагнитное излучение– ЭМИ) характеризуется векторами напряженности электрического Е, [В/м], и магнитного Н, [А/м], полей, которые определяют силовые свойства ЭМП.Длина волны λ, частота колебаний f и скорость распространения электромагнитных волн в воздухе с связаны соотношением с = λ f. Например, для промышленной частоты f = 50 Гц длина волны λ = 3·108/50 = 6000 км, а для ультракоротких частот f = 3·108 Гц длина волны равна 1 м. В ЭМП существует три зоны, которые различаются по расстоянию от источника. Зона индукции I(ближняя зона) имеет радиус R≤ λ/2π. В этой зоне электромагнитная волна не сформирована, и поэтому на человека действует независимо друг от друга напряженность электрического и магнитного полей.Зона интерференции II (промежуточная) имеет радиус λ/2π  R  2π λ.В этой зоне одновременно воздействуют на человека напряженность электрического и магнитного полей, а также энергетическая составляющая. Зона излучения III(дальняя), имеющая радиус R2πλ, характеризуется тем, что это зона сформировавшейся электромагнитной волны. В этой зоне на человека воздействует только энергетическая составляющая, а векторы Е и Н всегда взаимно перпендикулярны. В вакууме и воздухе Е = 377 Н.Для токов промышленных частот размер зон I и II составляет несколько десятков километров. Начиная со сверхвысоких частот, зона индукции уменьшается и оценка осуществляется по характеристике S, для которой в нормативных документах принято название – плотность потока энергии (ППЭ), хотя фактически – это плотность потока мощности, [Вт/м2], которая в общем виде определяется векторным произведением Е и Н, а для сферических волн при распространении в воздухе может быть выражена как , где Р – мощность излучения,Вт. Источники ЭМП и классификация электромагнитных излучений Естественными источниками электромагнитных полей и излучений являются атмосферное электричество, радиоизлучения Солнца и галактик, электрическое и магнитное поля Земли. Источниками электрических полей промышленной частоты (50 Гц) являются линии электропередач, а также все высоковольтные установки промышленной частоты.Магнитные поля промышленной частоты возникают вокруг любых электроустановок и токопроводов промышленной частоты. Источниками электромагнитных излучений радиочастот являются мощные радиостанции, антенны, установки индукционного нагрева, исследовательские установки, высокочастотные приборы и устройства, используемые в промышленности, в медицине и в быту.Источниками электростатического поля и электромагнитных излучений в широком диапазоне частот являются персональные электронно-вычислительные машины (ПЭВМ) и видеодисплейные терминалы (ВДТ) на электронно-лучевых трубках. Главную опасность для пользователей представляют электромагнитное излучение монитора в диапазоне частот 5 Гц…400 кГц и статический электрический заряд на экране.В табл. 11 представлен весь спектр электромагнитных излучений. Таблица 11Спектр электромагнитных излучений

Ионизирующие излучения

Естественное и искусственное освещение

Требования безопасности к производственным процессам и оборудованию

Методы и средства обеспечения безопасности

Электробезопасность

Основные понятия и определения

Причины травматизма

Критерии оценки травматизма

Расследование несчастных случаев на производстве и случаев профзаболеваний

РАЗДЕЛ 4 ЧРЕЗВЫЧАЙНЫЕ СИТУАЦИИ

Основные законодательные и подзаконные акты

Основные понятия и определения

Классификация чрезвычайных ситуаций

Фазы развития крупных аварий

Очаги поражения, создаваемые при чс

Землетрясения

Наводнения

Понятие об устойчивости функционирования объектов экономики

Факторы, влияющие на устойчивость функционирования объекта экономики в условиях чрезвычайных ситуаций

Требования норм проектирования инженерно-технических мероприятий (ИТМ)

Требования норм проектирования ИТМ к размещению объектов экономики

Требования норм ИТМ к проектированию и строительству зданий и сооружений

Мероприятия по повышению устойчивости функционирования промышленных предприятий

Повышение устойчивости инженерно-технического комплекса предприятий

Понятие пожара. Условия возникновения горения

Формы горения

Показатели взрыво- и пожарной опасности веществ

Взрывоопасность как травмирующий фактор производственной среды

Опасные факторы пожара

Обеспечение пожарной безопасности

Молниезащита зданий и сооружений

Общие положения

Общие положения

Обеспечение требований промышленной безопасности

Экспертиза промышленной безопасности

Разработка Декларации промышленной безопасности

Требования промышленной безопасности по готовностик действиям по локализации и ликвидации последствий аварии на опасном производственном объекте

Обязательное страхование ответственностиза причинение вреда при эксплуатации опасного производственного объекта

Структура Единой государственной системы предупреждения и ликвидации чрезвычайных ситуаций и ее уровни

Основные задачи РСЧС

Силы и средства РСЧС

Права, обязанности и ответственность гражданпо Гражданской обороне

Оповещение о чрезвычайных ситуациях

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

ОГЛАВЛЕНИЕ

(под углом α) называется отношение силы света, излучаемой поверхностью в этом направлении, к площади проекции светящейся поверхности на плоскость, перпендикулярную к этому направлению. Яркость измеряется в канделах на квадратный метр (кд/м2).

Схема определения яркости поверхности показана на рис. 28.



Lα


S


I


Scosα




,

где Lαяркость поверхности в направлении α, кд/м2;

I – сила света, кд;

S – площадь освещенной поверхности, м2;

α – угол, образованный направлением света с нормалью к поверхности S.

Рис. 28. Схема определения яркости поверхности

Яркость освещенных поверхностей зависит от их световых свойств, степени освещенности и угла, под которым поверхность рассматривается; яркость излучающей поверхности большинства материалов в разных направлениях различна, однако существуют тела, обладающие одинаковой яркостью во всех направлениях (например, матовые отражающие поверхности).

Обобщенный закон освещенности



Если освещаемая поверхность находится на расстоянии от источника света силой I и наклонена под углом падения лучей θ, то освещенность этой поверхности вычисляется по формуле

сosθ ,

где Е – освещенность, лк;

I – сила света, кд;

r – расстояние от освещаемой поверхности до источника света, м;

θ – угол падения светового луча.

Виды освещения


По источнику излучения светового потока различают естественное, совмещенное и искусственное освещение.

Естественное освещение создается природными источниками света – прямыми солнечными лучами и диффузным светом небосвода (от солнечных лучей, рассеянных атмосферой). Естественное освещение является биологически наиболее ценным видом освещения, к которому максимально приспособлен глаз человека.
дефицит естественного света и денатурация световой среды в городах отнесены к факторам, неблагоприятным для деятельности человека. Особое значение имеет качество световой среды внутри помещения, где человеку должен быть обеспечен не только зрительный комфорт, но и необходимый биологический эффект от освещения.

Помещения с постоянным пребыванием людей должны иметь, как правило, естественное освещение.

В производственных помещениях используются следующие виды естественного освещения: боковое –через окна в наружных стенах; верхнее – через световые фонари в перекрытиях; комбинированное– через световые фонари и окна.

В зданиях с недостаточным естественным освещением применяют совмещенное освещение сочетание естественного и искусственного света. Искусственное освещение в системе совмещенного освещения может функционировать постоянно (в зонах с недостаточным естественным освещением) или включаться с наступлением сумерек.

Искусственное освещение на промышленных предприятиях осуществляется лампами накаливания и газоразрядными лампами и предназначено для освещения рабочих поверхностей при недостаточности естественного освещения и в темное время суток.

В лампах накаливания свечение возникает в результате нагрева вольфрамовой нити до высоких температур. Такие лампы удобны в эксплуатации, просты в изготовлении, не требуют дополнительных устройств для включения в сеть, отличаются малым временем разгорания. Однако лампы накаливания имеют существенные недостатки: низкая световая отдача
(7 ... 19 лм/Вт); низкий КПД, равный 10...13 %; сравнительно малый срок службы (до 2500 ч). Спектр ламп отличается от спектра дневного света преобладанием желтых и красных лучей, что в какой-то степени искажает восприятие человеком цветов окружающих предметов, поэтому такие лампы не рекомендуется применять на работах, требующих различения цветов.

Галогенные лампы накаливания наряду с вольфрамовой нитью содержат в колбе пары галогена (например, йода), который повышает температуру накала нити и практически исключает испарение. Они имеют более продолжительный срок службы (до 3000 ч) и высокую отдачу (до 30 лм/Вт).

Газоразрядные лампы излучают свет в результате электрического разряда в атмосфере инертных газов и паров металлов (например, паров ртути), а также за счет явления люминесценции. Для освещения помещений применяются газоразрядные лампы низкого (люминесцентные) и высокого давления.



Люминесцентные лампы в зависимости от состава люминофора, обусловливающего их различную цветность, делят на несколько типов: ЛБ – лампы белого света, ЛД – лампы дневного света, ЛДЦ–лампы дневного света с улучшенной цветопередачей, ЛЕ – лампы естественного солнечного света, ЛТБ – лампы тепло-белого света, ЛХБ – лампы холодно-белого света, ЛХЕ – лампы холодно-естественного света.

Газоразрядные лампы высокого давления бывают дуговые ртутные люминесцентные (ДГЛ), дуговые ртутные с йодидами металлов (ДРИ), дуговые ксеноновые трубчатые (ДКсТ), дуговые натриевые трубчатые (ДНаТ).

Преимуществами газоразрядных ламп перед лампами накаливания являются высокая световая отдача – 40…110 лм/Вт (люминесцентные до 75, ртутные до 60, металло-галогенные до 100, ксеноновые до 40, натриевые до 110 лм/Вт), большой срок службы (до 8000…12000 ч) и возможность получения светового потока практически с любым спектром. К недостаткам относятся:

  • пульсация светового потока, слепящее действие, шум дросселей, возникновение стробоскопического эффекта («рябит в глазах» и создается иллюзия движения (вращения) в обратную сторону либо полного отсутствия движения);

  • длительный период разгорания (в некоторых случаях до 10…15 мин);

  • сложность схемы включения;

  • зависимость от температуры внешней среды.

Светильники – источники света, заключенные в арматуру, предназначены для правильного распределения светового потока и защиты глаз от чрезмерной яркости источника света. Арматура защищает источник света от механических повреждений, а также дыма, пыли, копоти, влаги, обеспечивает крепление и подключение к источнику питания.

По светораспределению светильники подразделяются на светильники прямого, рассеянного и отраженного света. Светильники прямого света более 80 % светового потока направляют в нижнюю полусферу за счет внутренней отражающей эмалевой поверхности. Светильники рассеянного света излучают световой поток в обе полусферы: 40 – 60 % светового потока вниз, 60 – 80 % –вверх. Светильники отраженного света более 80 % светового потока направляют вверх на потолок, а отражаемый от него свет направляется вниз в рабочую зону.


а

б


Рис. 29. Защитный угол светильника:

а–с лампой накаливания;
б – с люминесцентными лампами

Для защиты глаз от блескости светящейся поверхности лампы служат экранирующие решетки, рассеиватели из прозрачной пластмассы или стекла. Степень защиты глаз от яркости источника света характеризуется защитным углом светильника – это угол, образованный горизонталью от поверхности лампы (края светящейся нити) и линией, проходящей через край арматуры (рис. 29).


Искусственное освещение по назначению разделяют на следующие виды:

  • рабочее;

  • дежурное;

  • аварийное;

  • эвакуационное;

  • охранное.

по размещению светильников различают системы освещения:

  • общего (равномерного или локализованного);

  • местного;

  • комбинированного.

Общее искусственное освещение предназначается для освещения всего помещения, местное (в системе комбинированного) – для увеличения освещения лишь рабочих поверхностей или отдельных частей оборудования. Местное освещение может быть стационарным и переносным. Для него чаще применяются лампы накаливания, так как люминесцентные лампы могут вызвать стробоскопический эффект. Общее освещение в системе комбинированного должно обеспечивать не менее 10 % требуемой по нормам освещенности. Его назначение в этом случае – выравнивание яркости и устранение резких теней. Применение только местного освещения не допускается.

Общее равномерное освещениепредусматривает размещение светильников (в прямоугольном или шахматном порядке) для создания рациональной освещенности при выполнении однотипных работ по всему помещению, при большой плотности рабочих мест. Общее локализованное освещение применяется для обеспечения на ряде рабочих мест освещенности в заданной плоскости, когда около каждого из них устанавливается дополнительный светильник, а также при выполнении на участках цеха различных по характеру работ или при наличии затеняющего оборудования.


Нормирование освещенности




Необходимые уровни освещенности рабочего освещения нормируют в соответствии со СНиП 23.05-95 «Естественное и искусственное освещение» в зависимости от точности выполняемых производственных операций, световых свойств рабочей поверхности и рассматриваемой детали, системы освещения.

Естественное освещение



Естественное освещение изменяется в очень широких пределах и зависит от времени суток, времени года, облачности и т.д. Поэтому принято характеризовать его не абсолютным значением освещенности на рабочем месте, а относительным в виде коэффициента естественной освещенности (КЕО), показывающего, во сколько раз освещенность внутри помещения меньше освещенности снаружи; этот показатель выражают в процентах.

коэффициент естественной освещенности
(КЕО) представляет собой отношение естественной освещенности внутри помещения в точках ее минимального значения на рабочей поверхности к одновременно замеренному значению освещенности наружной горизонтальной поверхности, освещенной диффузным светом полностью открытого небосвода (непрямым солнечным светом):

,

где е – коэффициент естественной освещенности, %.

Евн – освещенность внутри помещения, лк;

Енар – наружная освещенность, лк.

Для каждого производственного помещения строится кривая значения КЕО в характерном сечении (поперечный разрез посеpедине помещения перпендикулярно плоскости световых проемов) (рис. 30).

При боковом освещении нормируется минимальное значение еmin: при одностороннем – в точке, расположенной на расстоянии 1 м от стены, наиболее удаленной от световых проемов (рис. 30, а), при двустороннем – в точке посередине помещения (рис. 30, б). При верхнем и комбинированном освещении нормируется среднее значение еср (рис. 30, в, г). В производственных помещениях с верхним и комбинированным освещением еср не должно быть меньше нормированного значения при боковом освещении для аналогичной зрительной работы.


абвг
Рис. 30. Схемы распределения КЕО по характерному разрезу помещения:

а– одностороннее боковое освещение; б– двустороннее боковое освещение;
в – верхнее освещение; г– комбинированное освещение; 1– уровень рабочей поверхности
Нормируемое значение КЕО, еN, для зданий, располагаемых в различных районах, следует определять по формуле

еN = ен·mn,

где N – номер группы обеспеченности естественным светом;

ен– нормативное значение КЕО, соответствующее разряду зрительной работы, % (определяется по СниП 23-05-95 в зависимости от минимального размера объекта различения);

mN – коэффициент светового климата.

Пример расчета естественной освещенности
Требуется определить, соответствует ли нормам естественная освещенность в производственном помещении при боковом одностороннем освещении, если