Файл: Г. В. Тягунов Безопасность жизнедеятельности.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 05.05.2024

Просмотров: 614

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Раздел 1 Теоретические основы БЖД

Основные понятия БЖД

Аксиома о потенциальной опасности деятельности

Структура курса БЖД

Понятие риска

Концепция приемлемого риска

Пути управления риском

Методические подходы к изучению риска

Последовательность изучения опасностей

Системный анализ безопасности

Общие принципы и механизмы адаптации организма человека к условиям среды обитания

Взаимосвязь человека с окружающей средой

Совместимость элементов системы «человек – среда»

Тяжесть и напряженность труда

Психические процессы, свойства и состояния, влияющие на безопасность труда

Работоспособность и ее динамика

Утомление

запредельные формы психического напряжения

Влияние алкоголя на безопасность труда

Основные психологические причины травматизма

Раздел 2 ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ БЖД

Законодательная и нормативно-техническая основа управления факторами среды

Роль атмосферы в жизни планеты

Состав атмосферы

Загрязнители атмосферы

Влияние химических веществ на живые организмы

Гигиеническое нормирование вредных веществ

Санитарно - защитные зоны (СЗЗ)

общая характеристика водных источников планеты

Загрязнители водных источников

Показатели качества воды

Категории водопользования

Влияние хозяйственной деятельности человека на состояние почвы

Основные загрязнители почвы

Обращение с отходами производства и потребления

Виды экологического мониторинга

Задачи системы экологического мониторинга

Основные разделы ОВОС

Определение платежей за загрязнение природной среды

Виды особо охраняемых территорий

Раздел 3 Безопасность в условиях производства(охрана труда)

Нормативные правовые акты, содержащие государственные нормативные требования по ОТ

Государственное управление охраной труда

Обучение, инструктирование и проверка знаний работников по охране труда на предприятии, в учреждении

Ответственность за нарушение норм охраны труда

Социальное страхование от несчастных случаев и профессиональных заболеваний

состояние воздушной среды производственных помещений

Виброакустические факторы

Электромагнитные поля Электромагнитное поле (ЭМП) представляет особую форму материи. Всякая электрически заряженная частица окружена электромагнитным полем. электромагнитное поле может существовать и в свободном состоянии в виде движущихся со скоростью 3·108 м/с фотонов или в виде электромагнитных волн.Движущееся ЭМП (электромагнитное излучение– ЭМИ) характеризуется векторами напряженности электрического Е, [В/м], и магнитного Н, [А/м], полей, которые определяют силовые свойства ЭМП.Длина волны λ, частота колебаний f и скорость распространения электромагнитных волн в воздухе с связаны соотношением с = λ f. Например, для промышленной частоты f = 50 Гц длина волны λ = 3·108/50 = 6000 км, а для ультракоротких частот f = 3·108 Гц длина волны равна 1 м. В ЭМП существует три зоны, которые различаются по расстоянию от источника. Зона индукции I(ближняя зона) имеет радиус R≤ λ/2π. В этой зоне электромагнитная волна не сформирована, и поэтому на человека действует независимо друг от друга напряженность электрического и магнитного полей.Зона интерференции II (промежуточная) имеет радиус λ/2π  R  2π λ.В этой зоне одновременно воздействуют на человека напряженность электрического и магнитного полей, а также энергетическая составляющая. Зона излучения III(дальняя), имеющая радиус R2πλ, характеризуется тем, что это зона сформировавшейся электромагнитной волны. В этой зоне на человека воздействует только энергетическая составляющая, а векторы Е и Н всегда взаимно перпендикулярны. В вакууме и воздухе Е = 377 Н.Для токов промышленных частот размер зон I и II составляет несколько десятков километров. Начиная со сверхвысоких частот, зона индукции уменьшается и оценка осуществляется по характеристике S, для которой в нормативных документах принято название – плотность потока энергии (ППЭ), хотя фактически – это плотность потока мощности, [Вт/м2], которая в общем виде определяется векторным произведением Е и Н, а для сферических волн при распространении в воздухе может быть выражена как , где Р – мощность излучения,Вт. Источники ЭМП и классификация электромагнитных излучений Естественными источниками электромагнитных полей и излучений являются атмосферное электричество, радиоизлучения Солнца и галактик, электрическое и магнитное поля Земли. Источниками электрических полей промышленной частоты (50 Гц) являются линии электропередач, а также все высоковольтные установки промышленной частоты.Магнитные поля промышленной частоты возникают вокруг любых электроустановок и токопроводов промышленной частоты. Источниками электромагнитных излучений радиочастот являются мощные радиостанции, антенны, установки индукционного нагрева, исследовательские установки, высокочастотные приборы и устройства, используемые в промышленности, в медицине и в быту.Источниками электростатического поля и электромагнитных излучений в широком диапазоне частот являются персональные электронно-вычислительные машины (ПЭВМ) и видеодисплейные терминалы (ВДТ) на электронно-лучевых трубках. Главную опасность для пользователей представляют электромагнитное излучение монитора в диапазоне частот 5 Гц…400 кГц и статический электрический заряд на экране.В табл. 11 представлен весь спектр электромагнитных излучений. Таблица 11Спектр электромагнитных излучений

Ионизирующие излучения

Естественное и искусственное освещение

Требования безопасности к производственным процессам и оборудованию

Методы и средства обеспечения безопасности

Электробезопасность

Основные понятия и определения

Причины травматизма

Критерии оценки травматизма

Расследование несчастных случаев на производстве и случаев профзаболеваний

РАЗДЕЛ 4 ЧРЕЗВЫЧАЙНЫЕ СИТУАЦИИ

Основные законодательные и подзаконные акты

Основные понятия и определения

Классификация чрезвычайных ситуаций

Фазы развития крупных аварий

Очаги поражения, создаваемые при чс

Землетрясения

Наводнения

Понятие об устойчивости функционирования объектов экономики

Факторы, влияющие на устойчивость функционирования объекта экономики в условиях чрезвычайных ситуаций

Требования норм проектирования инженерно-технических мероприятий (ИТМ)

Требования норм проектирования ИТМ к размещению объектов экономики

Требования норм ИТМ к проектированию и строительству зданий и сооружений

Мероприятия по повышению устойчивости функционирования промышленных предприятий

Повышение устойчивости инженерно-технического комплекса предприятий

Понятие пожара. Условия возникновения горения

Формы горения

Показатели взрыво- и пожарной опасности веществ

Взрывоопасность как травмирующий фактор производственной среды

Опасные факторы пожара

Обеспечение пожарной безопасности

Молниезащита зданий и сооружений

Общие положения

Общие положения

Обеспечение требований промышленной безопасности

Экспертиза промышленной безопасности

Разработка Декларации промышленной безопасности

Требования промышленной безопасности по готовностик действиям по локализации и ликвидации последствий аварии на опасном производственном объекте

Обязательное страхование ответственностиза причинение вреда при эксплуатации опасного производственного объекта

Структура Единой государственной системы предупреждения и ликвидации чрезвычайных ситуаций и ее уровни

Основные задачи РСЧС

Силы и средства РСЧС

Права, обязанности и ответственность гражданпо Гражданской обороне

Оповещение о чрезвычайных ситуациях

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

ОГЛАВЛЕНИЕ





Рис. 38. Защита АЭС от выхода радиации (барьеры безопасности)

Требования к зданиям и сооружениям других отраслей экономики


К зданиям и сооружениям, возводимым в сейсмоопасных районах, предъявляются следующие требования:

– в зонах, где возможны землетрясения силой 7, 8 и 9 баллов, здания должны быть симметричны относительно своих осей (несимметричная планировка ведет к возникновению крутящих колебаний, которые определены для конструкций). При интенсивности более 9 баллов возведение зданий не допускается;

  • наиболее сейсмостойкими являются крупнопанельные, каркасные здания и здания из объемных блоков, поэтому промышленные здания должны быть железобетонными с металлическими каркасами в бетонной опалубке;

– соединения элементов зданий и сооружений должны быть способны к пластическим деформациям без разрывов;

– особенно тщательно должна выполняться сварка швов в узловых соединениях;

– подземные коммуникации должны прокладываться на большой глубине, в сопряжениях бетонных или чугунных водопроводных труб применяются гибкие стыки;

если здания и сооружения имеют в плане сложную форму, их следует разделять антисейсмическими швами по всей высоте;

  • наиболее важные производственные сооружения следует строить заглубленными или пониженной высотности, прямоугольной формы в плане;

  • в районах, где потенциально возможно радиационное или химическое заражение, должна быть предусмотрена возможность герметизации помещений от проникновения радиационной пыли или АХОВ;

  • складские помещения для хранения воспламеняющихся веществ (бензин, керосин, нефть) должны размещаться в отдельных блоках заглубленного или полузаглубленного типа;

  • вновь строящиеся, реконструируемые бани, прачечные, фабрики, химчистки должны приспосабливаться для санобработки людей, специальной обработки одежды, техники.

Мероприятия по повышению устойчивости функционирования промышленных предприятий




Повышение степени защиты производственного персонала в условиях чрезвычайных ситуаций включает:

  • заблаговременное строительство убежищ на предприятиях со взрыво-опасными веществами, в зонах отчуждения вокруг радиоактивных объектов и на химически опасных объектах;

  • планирование и подготовку эвакуационных мероприятий из зон отчуж-дения и отселения, районов, подверженных катастрофическим затоплениям, землетрясениям и т.п.;

  • разработку режимов производственной деятельности на случай загряз-нения местности радиоактивными веществами;

  • накопление средств индивидуальной защиты для обеспечения всего производственного персонала.

Повышение устойчивости инженерно-технического комплекса предприятий

Повышение надежности и механической прочности зданий
и сооружений



К числу мероприятий, повышающих надежность и механическую прочность зданий и сооружений, относятся следующие мероприятия:

– вместо зданий и сооружений, которые могут получить полные или сильные разрушения при незначительных избыточных давлениях или небольшой интенсивности землетрясений, проектируются здания и сооружения с жестким каркасом, увеличенной площадью световых проемов, легкой и огнестойкой кровлей;

установка дополнительных связей между несущими элементами, повышающими их антисейсмические свойства, устройство каркасов, рам, подкосов, опор для уменьшения пролета несущих конструкций, применение более прочных материалов;

– сооружение дополнительных конструкций, обеспечивающих быструю эвакуацию людей при пожарах, особенно из высоких зданий;

– устройство подземных хранилищ, заглублений емкостей в грунт, обва-лование, сооружение поддонов, увеличение механической прочности емкостей за счет установки ребер жесткости для хранения АХОВ и других агрессивных жидкостей.

Повышение устойчивости технологического оборудования



Повышению устойчивости технологического оборудования могут способствовать следующие меры:

– рациональная компоновка технологического оборудования, чтобы исключить повреждения его обломками разрушающихся конструкций;

– размещение наиболее ценного и ударно-нестойкого оборудования в зданиях с повышенными прочностными характеристиками;

– защита пультов управления технологическим процессом, ценного оборудования защитными конструкциями (кожухами, козырьками и т.д.);

– создание запасов наиболее уязвимых деталей и узлов технологического оборудования.

Защита инженерно-технического комплекса от заражения
при выбросах радиоактивных и аварийно химически опасных веществ



Мероприятия, обеспечивающие защиту инженерно-технического комплекса от заражения при утечках (выбросах) радиоактивных и аварийно химически опасных веществ:

– повышение коэффициента защиты зданий и сооружений;

– осуществление частичной герметизации помещений (замазываются щели и трещины в ограждающих конструкциях, заделываются оконные, дверные и другие проемы, отсутствие которых не нарушает нормальных условий эксплуатации оборудования);

– максимально возможное сокращение запасов АХОВ и взрывоопасных жидкостей на промежуточных складах и технологических емкостях предприятия; повышение устойчивости технологического процесса;

– создание системы централизованного или децентрализованного автома-тизированного управления технологическим процессом;

– мероприятия по возможному упрощению технологического процесса;

– создание запасов и резервов универсального оборудования;

– разработка графика безаварийной остановки производства, в котором указывается время на остановку отдельных агрегатов, ответственный исполнитель и номер инструкции по его остановке.

Контрольные вопросы





  1. Сформулируйте понятие устойчивости объекта в ЧС.

  2. Какие факторы влияют на устойчивость функционирования объекта в ЧС?

  3. Назовите категории радиационных объектов по потенциальной опасности.

  4. Какие требования предъявляются к размещению радиационных объектов в зависимости от категории потенциальной опасности?

  5. Что такое «зона наблюдения»? Для каких объектов она устанавливается?

  6. Перечислите основные требования к размещению химически опасных объектов.

  7. Каким требованиям должны удовлетворять здания и сооружения атомных станций?

  8. Какие элементы выполняют роль «барьеров безопасности» на пути возможного распространения радиоактивных веществ на АЭС?

  9. Перечислите общие требования к зданиям и сооружениям объектов экономики.

  10. Назовите мероприятия по повышению надежности и механической прочности зданий и сооружений.

  11. Какие мероприятия выполняются в целях повышения устойчивости технологического оборудования?

  12. Перечислите мероприятия, обеспечивающие защиту инженерно-технического комплекса от заражения при утечках (выбросах) радиоактивных и аварийно химически опасных веществ.


Оценка физической устойчивости объекта
к воздействию пожаров