Файл: Расчёт характеристик трансформатора и электрических двигателей.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 03.02.2024
Просмотров: 67
Скачиваний: 0
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Где E-ЕДС двигателя, В
Выразим сопротивление динамического торможения из формулы 1.12 ,получим:
Найдем ЭДС двигателя по формуле(1.13):
| |
Где
Подставим данные и вычисли ЭДС
В
Теперь можем вычислить сопротивление динамического торможения
1.2.8 Определение полных потерь мощности в двигателе при работе в номинальном режиме.
В номинальном режиме потери мощности двигателя постоянного тока с независимым возбуждением определяется по формуле(1.14):
| |
Где
Подставим данные,получим
1.2.9 Изменение КПД двигателя.
Исследование, как изменяется КПД двигателя, работающего при номинальной нагрузке, на реостатной характеристике, при пониженном на 40% напряжении, ослабленном на 20% магнитном потоке в сравнении с номинальным значением КПД, указанным в паспорте двигателя.
Номинальная нагрузка определяется по формуле(1.15):
| |
Где
, рад/с
Естественная характеристика:
Реостатная характеристика:
Пониженное напряжение:
Ослабленный магнитный поток:
Вывод: Из полученных при расчёте механических характеристик двигателя постояного видно, что изменяя магнитный поток, напржение подводимое к обмотке якоря или вводя сопротивления в цепь якоря, можно регулировать частоту вращения двигателя.
2.Траснформатор
2.1 Теоритический материал трансформатора
2.1.1 Назначение и история развития трансформатора.
Трансформатором называют статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки и предназначенное для преобразования посредством электромагнитной индукции электрической энергии переменного тока одного напряжения в переменный ток другого напряжения при неизменной частоте.
Как правило, электрическая энергия вырабатывается там, где имеются энергетические ресурсы, т.е. на крупных реках и вблизи месторождений угля и газа. Потребители же энергии: крупные промышленные центры, большие города и населенные пункты — находятся на значительном расстоянии от источников электроэнергии. Поэтому возникает необходимость передачи электрической энергии на дальние расстояния.
Особенностью электрической энергии является то обстоятельство, что одно и то же значение электрической мощности можно получить при разных ее параметрах: при низком напряжении и большом токе или при высоком напряжении и малом токе. В разных случаях требуется электроэнергия с разными параметрами и возникает необходимость изменять эти параметры, для чего и используют трансформаторы.
Принцип электромагнитного преобразования тока основан на явлении электромагнитной индукции, которое было открыто М. Фарадеем в 1831 г. Хотя это явление и использовалось позднее некоторыми учеными, но применение его для технических целей началось с работ П. Яблочкова, который впервые в 1876 г. применил устройство, имеющее разомкнутый сердечник с двумя независимыми обмотками, для питания электрических ламп — «свечей Яблочкова». Это устройство позднее стали называть трансформатором. Трансформаторы с замкнутым сердечником и сам термин «трансформатор» появились значительно позднее — в 1884—1886 гг.
Началом практического применения трансформаторов и развития трансформаторостроения следует считать 1890 г., когда в Германии приступили к сооружению первой в мире опытной линии электропередачи высокого напряжения протяженностью 175 км из г. Лауфена в г. Франкфурт-на-Майне. Эта трехфазная система тока была разработана русским ученым М.О. Доливо-Добровольским. Гидрогенератор тока, установленный в г. Лауфене, имел мощность 230 кВт при напряжении 95 В. Трехфазный трансформатор повышал напряжение в начале линии до 15 кВ. В дальнейшем напряжение линии электропередачи было повышено до 20 кВ. В конце линии напряжение понижалось до 65 В (фазное значение) и подавалось для питания трехфазного асинхронного двигателя. Трехфазные трансформаторы для передачи электроэнергии и асинхронный двигатель были построены немецкой фирмой AEG по проекту М.О. Доливо-Добровольского. К концу XIX и началу XX в. практически уже были созданы все основные типы электрических машин и разработаны основы их теории и методы расчета. Конструкция трансформатора, предложенная М.О. Доливо-Добровольским, практически не изменилась до наших дней. Однако технико-экономические показатели трансформаторов были существенно повышены благодаря улучшению свойств применяемых изоляционных и магнитных материалов, за счет усовершенствования конструкции магнитопровода и обмоток, а также оптимизации технологии их изготовления. Значительно повысились мощности трансформаторов и их напряжения. В настоящее время развитие электрических машин и трансформаторов идет по пути дальнейшего повышения их энергетических показателей, улучшения технологичности конструкций, снижения шума и вибраций.[4]
2.1.2 Принцип действия трансформатора.
Принцип действия трансформатора основан явлении взаимной индукции. Если одну из обмоток трансформатора подключить к источнику переменного напряжения, то по этой обмотке потечет переменный ток, который создаст в сердечнике переменный магнитный поток Ф. Этот поток сцеплен как с одной, так и с другой обмоткой и, изменяясь, будет индуцировать в них ЭДС. Так как в общем случае обмотки могут иметь различное число витков, то индуцируемые в них ЭДС будут отличаться по значению. В той обмотке, которая имеет большее число витков W, индуцируемая ЭДС будет больше, чем в обмотке, имеющей меньшее число витков. Индуцируемая в первичной обмотке ЭДС примерно равна приложенному напряжению и будет почти полностью его уравновешивать. Ко вторичной обмотке подключаются различные потребители электроэнергии, которые будут являться нагрузкой для трансформатора. В этой обмотке, под действием индуцированной в ней ЭДС возникнет ток I2, а на ее выводах установится напряжение U2. которые будут отличаться от тока 11 и напряжения U1 первичной обмотки. Следовательно, в трансформаторе происходит изменение параметров энергии: подводимая к первичной обмотке от сети электрическая энергия с напряжением U1 и током I1 посредством магнитного поля передается во вторичную обмотку с напряжением U2 и током I2. Трансформатор нельзя включать в сеть постоянного тока. В этом случае магнитный поток в нем будет неизменным во времени и, следовательно, не будет индуцировать ЭДС в обмотках. Вследствие этого в первичной обмотке будет протекать большой ток, так как при отсутствии ЭДС он будет ограничиваться только относительно небольшим активным сопротивлением обмотки. Во избежание перегорания обмотки протекание такого тока допускать нельзя.
Обмотка трансформатора, потребляющая энергию из сети, называется первичной обмоткой. Обмотки трансформатора подключаются к сетям с разными напряжениями. Обмотка, предназначенная для присоединения к сети с более высоким напряжением, называется обмоткой высшего напряжения (ВН), а подсоединяемая к сети с меньшим напряжением, — обмоткой низшего напряжения (НН). Если вторичное напряжение меньше первичного, то трансформатор называется понижающим, а если больше — повышающим. В зависимости от включения тех или иных обмоток к сети каждый трансформатор может быть как повышающим, так и понижающим. Трансформаторы с двумя обмотками называются двух-обмоточными.[5]Простейшая схема трансформации показана на рисунке 2.1.1
Рисунок 2.1.1 Простейшая схема трансформатора.
2.1.3 Опыт холостого хода и короткого замыкания трансформатора.
Опыт холостого хода(ХХ).
При опыте холостого хода трансформатора его вторичная обмотка разомкнута и тока в этой обмотке нет. Если первичную обмотку трансформатора включить в сеть источника электрической энергии переменного тока, то в этой обмотке будет протекать ток холостого хода , который представляет собой малую величину по сравнению с номинальным током трансформатора. В трансформаторах больших мощностей ток холостого хода может достигать значений порядка 5— 10% номинального тока. В трансформаторах малых мощностей этот ток достигает значения 25—30% номинального тока. Ток холостого хода создает магнитный поток в магнитопроводе трансформатора. Для возбуждения магнитного потока трансформатор потребляет реактивную мощность из сети. Что же касается активной мощности, потребляемой трансформатором при холостом ходе, то она расходуется на покрытие потерь мощности в магнитопроводе, обусловленных гистерезисом и вихревыми токами. Так как реактивная мощность при холостом ходе трансформатора значительно больше активной мощности, то коэффициент мощности cosφ его весьма мал и обычно равен 0,2-0,3.По данным опыта холостого хода трансформатора определяется сила тока холостого хода , потери в стали сердечника и коэффициент трансформации К.Силу тока холостого хода измеряет амперметр, включенный в цепь первичной обмотки трансформатора. При испытании трехфазного трансформатора определяется фазный ток холостого хода. О потерях в стали сердечника судят по показаниям ваттметра, включенного в цепь первичной обмотки трансформатора. Коэффициент трансформации трансформатора равен отношению показаний вольтметров, включенных в цепь первичной и вторичной обмоток. Приборы при ХХ подключаются по рисунку 2.1.2