Файл: Расчёт характеристик трансформатора и электрических двигателей.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 03.02.2024
Просмотров: 69
Скачиваний: 0
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
В установках, где требуется регулирование частоты вращения в относительно небольших пределах, необходимы плавный пуск, хорошие тормозные качества, ограничение токов в переходных процессах и т.д., находят широкое применение асинхронные двигатели с фазным ротором. Характерной особенностью этих двигателей является возможность уменьшения с помощью реостатов их пусковых токов при одновременном увеличении пускового момента. В настоящее время ,на долю асинхронных двигателей, в том числе и трёхфазные асинхронные двигатели с фазным ротором, приходится не менее 80% всех электродвигателей, выпускаемых промышленностью.
При расчёте асинхронного двигателя определим его основные характеристики: все составляющие мощностей, номинальный пусковой ток и номинальный и критический момент двигателя, а также номинальное и критическое скольжение. А так же рассчитаем и построим графики зависимости различных его величин.
1. Двигатель постоянного тока с независимым возбуждением
1.1 Теоритический материал двигателя постоянного тока.
-
Общие сведения.
Двигатели постоянного тока применяются в различных промышленных, транспортных системах, в которых необходимо осуществлять плавное регулирование скорости вращения или выдерживать постоянство момента (прокатные станы, лифты, металлорежущие станки).
Электродвигатель постоянного тока (ДПТ) - электрическая машина постоянного тока, преобразующая электрическую энергию постоянного тока в механическую энергию.
Двигатель постоянного тока с параллельным возбуждением – это электродвигатель, у которого обмотки якоря и возбуждения подключаются друг к другу параллельно. Часто по своей функциональности он превосходит агрегаты смешанного и последовательного типов в случаях, если необходимо задать постоянную скорость работы
Эра электродвигателей берёт своё начало с 30-х годов XIX века, когда Фарадей на опытах доказал способность вращения проводника, по которому проходит ток, вокруг постоянного магнита. На этом принципе Томасом Девенпортом был сконструирован и испытан первый электродвигатель постоянного тока. Изобретатель установил своё устройство на действующую модель поезда, доказав тем самым работоспособность электромотора.
Разные ученые пытались создать экономичный и мощный двигатель еще с первой половины 19 века. Основой послужило открытие М.Фарадея, сделанное в 1821 г. Он обнаружил, что помещенный в магнитное поле проводник вращается. Отталкиваясь от этого, в 1833 г изобретатель Томас Дэвенпорт смог сконструировать двигатель постоянного тока, а позже, в 1834 г, ученый Б.С.Якоби придумал прообраз современной модели двигателя с вращающимся валом. Устройство, более похожее на современные агрегаты, появилось в 1886 г, и до сегодняшнего дня электродвигатель продолжает совершенствоваться.
Практическое применение ДПТ нашёл Б. С. Якоби в 1839, установив его на лодке для вращения лопастей. Источником тока учёному послужили 320 гальванических элементов. Несмотря на громоздкость оборудования, лодка могла плыть против течения, транспортируя 12 пассажиров на борту.
Электропривода с ДПТ являлись до недавнего времени основным видом регулируемого ЭП с достаточно высокими показателями качества.
Наиболее распространенной серией двигателя постоянного тока остается серия – 2П в диапазоне мощностей от 0,13 до 200 кВт различного исполнения. Усовершенствование двигателей привело к разработке новой серии – 4П с улучшенными удельными показателями, где по сравнению с серией 2П снижена трудоемкость изготовления в 3 раза при уменьшении расхода меди на 30%. Для крановых механизмов выпускаются двигатели серии Д, для металлорежущих станков серии – ПБСТ, ПГТ.[1]
ДПТ ПВ при изменении нагрузки на валу в широких пределах мало изменяют свою скорость вращения, поэтому их применяют в тех случаях, когда важно, чтобы рабочая скорость механизма оставалась примерно постоянной (как при холостом ходе, так и нагрузке).
Преимущества и недостатки электродвигателей постоянного тока с параллельным возбуждением(ДПТ ПВ):
К достоинствам относится:
-
Линейная зависимость характеристик электродвигателей постоянного тока (прямые линии) упрощающие управление; -
Легко регулируемая частота вращения; -
хорошие пусковые характеристики; -
компактные размеры.
Недостатки:
-
ограниченный ресурс коллектора и щёток; -
дополнительная трата времени на профилактическое обслуживание, связанное с поддержанием коллекторно-щёточных узлов; -
ввиду того, что мы пользуемся сетями с переменным напряжением, возникает необходимость выпрямления тока; -
дороговизна в изготовлении якорей.
По перечисленным параметрам из недостатков в выигрыше оказываются модели асинхронных двигателей. Однако во многих случаях применение электродвигателя постоянного тока является единственно возможным вариантом, не требующим усложнения электрической схемы.
-
Конструкция и принцип работы.
Электродвигатели постоянного тока по конструкции подобны синхронным двигателям переменного тока, с разницей в типе тока. В простых демонстрационных моделях двигателя применяли один магнит и рамку с проходящим по ней током. Такое устройство рассматривалось в качестве простого примера. Современные двигатели являются совершенными сложными устройствами
, способными развивать большую мощность.
Главной обмоткой двигателя служит якорь, на который подается питание через коллектор и щеточный механизм. Он совершает вращательное движение в магнитном поле, образованном полюсами статора (корпуса двигателя). Якорь изготавливается из нескольких обмоток, уложенных в его пазах, и закрепленных там специальным эпоксидным составом.
Статор может состоять из обмоток возбуждения или из постоянных магнитов. В маломощных двигателях используют постоянные магниты, а в двигателях с повышенной мощностью статор снабжен обмотками возбуждения. Статор с торцов закрыт крышками со встроенными в них подшипниками, служащими для вращения вала якоря. На одном конце этого вала закреплен охлаждающий вентилятор, который создает напор воздуха и прогоняет его по внутренней части двигателя во время работы.
Принцип действия такого двигателя основывается на законе Ампера. При размещении проволочной рамки в магнитном поле, она будет вращаться. Проходящий по ней ток создает вокруг себя магнитное поле, взаимодействующее с внешним магнитным полем, что приводит к вращению рамки. В современной конструкции мотора роль рамки играет якорь с обмотками. На них подается ток, в результате вокруг якоря создается магнитное поле, которое приводит его во вращательное движение.
Для поочередной подачи тока на обмотки якоря применяются специальные щетки из сплава графита и меди.
Выводы обмоток якоря объединены в один узел, называемый коллектором, выполненным в виде кольца из ламелей, закрепленных на валу якоря. При вращении вала щетки по очереди подают питание на обмотки якоря через ламели коллектора. В результате вал двигателя вращается с равномерной скоростью. Чем больше обмоток имеет якорь, тем равномернее будет работать двигатель.
Щеточный узел является наиболее уязвимым механизмом в конструкции двигателя. Во время работы медно-графитовые щетки притираются к коллектору, повторяя его форму, и с постоянным усилием прижимаются к нему. В процессе эксплуатации щетки изнашиваются, а токопроводящая пыль, являющаяся продуктом этого износа, оседает на деталях двигателя. Эту пыль необходимо периодически удалять. Обычно удаление пыли выполняют воздухом под большим давлением.
Щетки требуют периодического их перемещения в пазах и продувки воздухом, так как от накопившейся пыли они могут застрять в направляющих пазах. Это приведет к зависанию щеток над коллектором и нарушению работы двигателя. Щетки периодически требуют замены из-за их износа. В месте контакта коллектора со щетками также происходит износ коллектора. Поэтому при износе якорь снимают и на токарном станке протачивают коллектор. После проточки коллектора изоляция, находящаяся между ламелями
коллектора стачивается на небольшую глубину, чтобы она не разрушала щетки, так как ее прочность значительно превышает прочность щеток.
Конструкция ДПТ представлена на рисунке 1.1.1
Рисунок 1.1.1 Конструкция ДПТ.
Постоянный магнит преобразовывает электрическую энергию в механическую через взаимодействие двух магнитных полей. Одно поле создаётся сборкой постоянными магнитами, другое — электрическим током, протекающим в обмотках двигателя. Эти два поля приводят к крутящему моменту, который имеет тенденцию вращать ротор. Когда ротор вращается, ток в обмотках коммутируется, обеспечивая непрерывный выход крутящего момента.
Коммутатор состоит из проводящих сегментов (стержней) из меди, которые представляют собой завершение отдельных катушек проволоки, распределённых вокруг арматуры. Вторая половина механического выключателя комплектуется щётками. Эти щётки обычно остаются неподвижными с корпусом двигателя.
По мере прохождения электрической энергии через щётки и арматуру создаётся крутильная сила в виде реакции между полем двигателя и якорем, вызывающим поворот якоря двигателя. Когда арматура поворачивается, щётки переключаются на соседние полосы на коммутаторе. Это действие переносит электрическую энергию на соседнюю обмотку и якорь.[2]
Схема ДПТ представлена на рисунке 1.2.1
-
Механические характеристики ДПТ ПВ.
Эксплуатационные свойства двигателей постоянного тока определяются механическими характеристиками — зависимостью частоты вращения от вращающего момента.
Из всего семейства характеристик электропривода с ДПТ ПВ необходимо выделить одну характеристику – естественную, которая определяется при номинальном напряжении, номинальном магнитном потоке и отсутствием дополнительных внешних сопротивлений в якорной цепи.
Естественная механическая характеристика двигателя даёт основные представления об электромеханических свойствах двигателя. Она определяет его рабочую номинальную скорость и показывает статическое изменение скорости при изменении нагрузки. Чем выше модуль жёсткости, тем более стабильна работа при широких изменениях момента.
Для управления работой двигателя (пуск, торможение, регулирование скорости) осуществляются необходимые изменения параметров и воздействий, определяющих его механические и электромеханические характеристики. Такими параметрами и воздействиями являются: суммарное сопротивление якорной цепи