Файл: Курс лекций по дисциплине Теория систем и системный анализ, читаемый автором в соответствии с учебными планами специальностей 351400 Прикладная информатика.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 03.02.2024

Просмотров: 430

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Требования ГОСТ специальности к содержанию курса.

ВВЕДЕНИЕ

1. ИСТОРИЯ СТАНОВЛЕНИЯ И РАЗВИТИЯ ОБЩЕЙ ТЕОРИИ СИСТЕМ

2. Предмет и содержание общей теории систем

3. ОСНОВНЫЕ положения ОбщеЙ теории систем

3.1. Основные понятия системного анализа

3.2. Определение понятия «система»

3.3. Принципы системного подхода

4. ОСНОВЫ СИСТЕМОЛОГИИ

4.1. Категория системы, ее свойства и признаки

Входные

Выходные элементы

СИСТЕМА

4.2. Системообразующие и системоразрушающие факторы

4.3. Классификация системных объектов

4.4. Структура, функции и этапы развития систем

4.5. Система и внешняя среда

5. СИСТЕМНЫЕ ОБЪЕКТЫ И ИХ ОБОБЩЕННАЯ ХАРАКТЕРИСТИКА

5.1. Системность неорганической и живой природы

5.2. Общество, личность и мышление как система

6. СИСТЕМНЫЕ ИССЛЕДОВАНИЯ КАК СОСТАВНАЯ ЧАСТЬ ОБЩЕЙ ТЕОРИИ СИСТЕМ

6.1. Общая характеристика системных исследований

6.2. Системный подход - методология системного исследования

6.3. Технология достижения целостности познания в системном исследовании

7. Сущность и принципы системного подхода

7.1. Принципы системного подхода.

7.2. Проблемы согласования целей

7.3. Проблемы оценки связей в системе

7.4. Пример системного подхода к задаче управления

7.5. Моделирование как метод системного анализа

7.6. Процессы принятия управляющих решений

8. ОПИСАНИЕ СИСТЕМНЫХ ОБЪЕКТОВ

8.1. Механизм процесса описания системных объектов

8.2. Принципы описания систем

8.3. Структура системного анализа

8.4. Методы и модели описания систем

Качественные методы описания систем

Количественные методы описания систем

8.5. Формирование общего представления системы

8.6. Кибернетика и ее роль в описании систем

9. Этапы системного анализа

9.1. Общие положения

9.2. Содержательная постановка задачи

9.3. Построение модели изучаемой системы в общем случае

9.4. Моделирование в условиях определенности

9.5. Наличие нескольких целей - многокритериальность системы

9.6. Моделирование системы в условиях неопределенности

9.7. Моделирование систем массового обслуживания

9.8. Моделирование в условиях противодействия, игровые модели

9.9. Моделирование в условиях противодействия, модели торгов

9.10. Методы анализа больших систем, планирование экспериментов

9.11. Методы анализа больших систем, факторный анализ

10. МЕТОДЫ ОПЕРЕЖАЮЩЕГО УПРАВЛЕНИЯ В СИСТЕМАХ

10.1. Причинно-следственный анализ

10.2. Процесс причинно-следственного анализа.

10.3. Варианты причинно-следственного анализа

10.4. Принятие решений

10.5. Процессы принятия решений различных типов

10.6. Анализ плана управленческой работы и обзор ситуации

10.7. Обзор ситуации

11. МОДЕЛИРОВАНИЕ И ПРОЕКТИРОВАНИЕ ИНФОРМАЦИОННЫХ СИСТЕМ

11.1. Моделирование систем

11.2. Проектирование систем

11.3. Практическое применение системного подхода в экономике

12. СИСТЕМНАЯ природа организаций и управления ими

12.1. Организация

12.2. Виды и формы системного представления структур организаций.

Заключение

ГЛОССАРИЙ ТЕРМИНОВ ТЕОРИИ СИСТЕМ И СИСТЕМНОГО АНАЛИЗА

Литература

Вопросы к экзамену по дисциплине

«Теория систем и системный анализ»

.

Для уточнения элементов и связей в определения включают свойства. Так, в определении А. Холла свойства (атрибуты) QA дополняют понятие элемента (предмета):

Sdef є < A, QA, R >.

А.И. Уёмов предложил двойственные определения, в одном из которых свойства qi характеризуют элементы ("вещи") ai, в другом - свойства qj характеризуют связи (отношения) rj.

Затем в определениях системы появляется понятие цель. Вначале - в неявном виде: в определении Ф.Е. Темникова "система - организованное множество" (в котором цель появляется при раскрытии понятия организованное); потом - в виде конечного результата, системообразующего критерия, функции (определения В.И. Вернадского, У.Р. Гибсона, П.К. Анохина, М.Г. Гаазе-Рапопорта), а позднее - и с явным упоминанием о цели:

Sdef є < A, R, Z >, где Z - цель.

В некоторых определениях уточняются условия целеобразования - среда SR, интервал времени DT, т.е. период, в рамках которого будет существовать система и ее цели, что сделано, например, в определении В.H. Сагатовского: Sdef є < A, R, Z, SR, DT >

Далее, в определение системы начинают включать, наряду с элементами, связями и целями, наблюдателя N, т.е. лицо, представляющее объект или процесс в виде системы при их исследовании или принятии решения: Sdef є < A, R, Z, N >.

На необходимость учета взаимодействия между изучаемой системой и исследователем указал У.Р. Эшби, а первое определение, в которое в явном виде включен наблюдатель, дал Ю.И. Черняк: "Система есть отражение в сознании субъекта (исследователя, наблюдателя) свойств объектов и их отношений в решении задачи исследования, познания":

Sdef є < A, QА, R, Z, N >.

Позднее Ю.И. Черняк стал учитывать и язык наблюдателя LN:

Sdef є < A, QА, R, Z, N, LN.

В определениях системы бывает и большее число составляющих, что связано с необходимостью дифференциации в конкретных условиях видов элементов, связей и т. д.

Сопоставляя эволюцию определения системы (элементы и связи, затем - цель, затем - наблюдатель) и эволюцию использования категорий теории познания, можно обнаружить сходство: вначале модели (особенно формальные) базировались на учете только элементов
и связей, взаимодействий между ними, затем стало уделяться внимание цели, поиску методов ее формализованного представления (целевая функция, критерий функционирования и т. п.), а, начиная с 60-х гг. все большее внимание обращают на наблюдателя, лицо, осуществляющее моделирование или проводящее эксперимент, т. е. лицо, принимающее решение.

С учетом этого и опираясь на более глубокий анализ сущности понятия системы, следует, видимо, относиться к этому понятию как к категории теории познания, теории отражения, как к категории, лежащей в основе концепции рассмотрения объекта в качестве системы. Действительно, история показала, что на основе определений системы разработан ряд методик системного анализа, обеспечивающих полноту структуризации целей системы с точностью до выбранной концепции и лежащего в ее основе определения.

Взгляд на определения системы как на средство начала ее исследования и стремление сохранить целостность при преобразовании или проектировании системы приводят к определению, в котором система не расчленяется на самые элементарные частицы (т.е. не разрушается полностью), что делается в вышеприведенных определениях, а представляется как совокупность укрупненных компонентов, принципиально необходимых для существования и функционирования исследуемой или создаваемой системы:

Sdef є <{Z}, {Str}, {Tech}, {Cond}>, где

{Z} - совокупность или структура целей;

{Str} - совокупность структур (производственная, организационная и т.п.), реализующих цели;

{Tech} - совокупность технологий (методы, средства, алгоритмы и т.п.), реализующих систему;

{Cond} - условия существования системы, т.е. факторы, влияющие на ее создание, функционирование и развитие.

Это определение позволяет не разрушать исследуемую систему, а сохранять в ней основные ее структуры, преобразуя и развивая их в соответствии с поставленными целями, а при создании новой системы помогает создать целостную концепцию ее проектирования, реализовать целевой подход к созданию системы.

Таким образом, в зависимости от количества учитываемых факторов и степени абстрактности определение понятия «система» можно представить в следующей символьной форме. Каждое определение обозначим буквой D (от лат. definitions) и порядковым номером, совпадающим с количеством учитываемых в определении факторов.



D1. Система есть нечто целое: S=А(1,0).

Это определение выражает факт существования и целостность. Двоичное суждение А(1,0) отображает наличие или отсутствие этих качеств.

D2. Система есть организованное множество (Темников Ф. Е.): S=(орг, М),

где орг - оператор организации; М - множество.

. Система есть множество вещей, свойств и отношений (Уемов А.И.): S=({т},{n},{r}),

где m - вещи, n - свойства, r - отношения.

D4. Система есть множество элементов, образующих структуру и обеспечивающих определенное поведение в условиях окружающей среды: S=( , SТ, ВЕ, Е),

где - элементы, - структура, ВЕ - поведение, Е - среда.

D5. Система есть множество входов, множество выходов, множество состояний, характеризуемых оператором переходов и оператором выходов: S=(Х, Y, Z, H, G), где Х - входы, Y - выходы, Z - состояния, Н - оператор переходов, G - оператор выходов.

Это определение учитывает все основные компоненты, рассматриваемые в автоматике.

D6. Это шестичленное определение, как и последующие, трудно сформулировать в словах. Оно соответствует уровню биосистем и учитывает генетическое (родовое) начало GN, условия существования КD, обменные явления МВ, развитие ЕV, функционирование и репродукцию (воспроизведения) : S=(GN, KD, MB, EV, FC, RP).

D7. Это определение оперирует понятиями модели F, связи , пересчета R, самообучения FL, самоорганизации FQ, проводимости связей СО и возбуждения моделей JN: S=(F, SС, R, FL, FO, СО, JN).

Данное определение удобно при нейрокибернетических исследованиях.

D8. Если определение D5 дополнить фактором времени и функциональными связями, то получим определение системы, которым обычно оперируют в теории автоматического управления: S=(Т, X, Y, Z, , V, h, j),

где Т - время, Х - входы, Y - выходы, Z - состояния, - класс операторов на выходе, V - значения операторов на выходе, h - функциональная связь в уравнении y(t2)=h(x(t1),z(t1),t2), j - функциональная связь в уравнении z(t
2)=j(x(t1), z(t1), t2).

D9. Для организационных систем удобно в определении системы учитывать следующее:

S=(РL, RO, RJ, EX, PR, DT, SV, RD, EF),

где РL - цели и планы, RO - внешние ресурсы, RJ - внутренние ресурсы, ЕХ - исполнители, PR - процесс, - помехи, SV - контроль, RD - управление, ЕF - эффект.

Последовательность определений можно продолжить до Dn (n = 9, 10, 11, ...), в которых учитывалось бы такое количество элементов, связей и действий в реальной системе, которое необходимо для решаемой задачи, для достижения поставленной цели. В качестве «рабочего» определения понятия системы в литературе по теории систем часто рассматривается следующее:

«Система - множество элементов, находящихся в отношениях и связях друг с другом, которое образует определенную целостность, единство».

Сопоставляя эволюцию определения системы (элементы и связи, затем - цель, затем - наблюдатель) и эволюцию использования категорий теории познания, можно обнаружить сходство: вначале модели (особенно формальные) базировались на учете только элементов и связей, взаимодействий между ними, затем стало уделяться внимание цели, поиску методов ее формализованного представления (целевая функция, критерий функционирования и т. п.), а, начиная с 60-х гг. все большее внимание обращают на наблюдателя, лицо, осуществляющее моделирование или проводящее эксперимент, т. е. лицо, принимающее решение.

С учетом этого и опираясь на более глубокий анализ сущности понятия системы, следует, видимо, относиться к этому понятию как к категории теории познания, теории отражения, как к категории, лежащей в основе концепции рассмотрения объекта в качестве системы. Действительно, история показала, что на основе определений системы разработан ряд методик системного анализа, обеспечивающих полноту структуризации целей системы с точностью до выбранной концепции и лежащего в ее основе определения.

Взгляд на определения системы как на средство начала ее исследования и стремление сохранить целостность при преобразовании или проектировании системы приводят к определению, в котором система не расчленяется на самые элементарные частицы (т.е. не разрушается полностью), что делается в вышеприведенных определениях, а представляется как совокупность
укрупненных компонентов, принципиально необходимых для существования и функционирования исследуемой или создаваемой системы: Sdef є <{Z}, {Str}, {Tech}, {Cond}>, где

{Z} - совокупность или структура целей;

{Str} - совокупность структур (производственная, организационная и т.п.), реализующих цели;

{Tech} - совокупность технологий (методы, средства, алгоритмы и т.п.), реализующих систему;

{Cond} - условия существования системы, т.е. факторы, влияющие на ее создание, функционирование и развитие.

Это определение позволяет не разрушать исследуемую систему, а сохранять в ней основные ее структуры, преобразуя и развивая их в соответствии с поставленными целями, а при создании новой системы помогает создать целостную концепцию ее проектирования, реализовать целевой подход к созданию системы.

Выберем золотую середину, и будем далее понимать термин система как совокупность (множество) отдельных объектов с неизбежными связями между ними. Если мы обнаруживаем хотя бы два таких объекта: учитель и ученик в процессе обучения, продавец и покупатель в торговле, телевизор и передающая станция в телевидении и т. д. - то это уже система. Короче, с некоторой претензией на высокопарность, можно считать системы способом существования окружающего нас мира.