Файл: 1. Современные представления о строении и функции мембран.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 10.04.2024
Просмотров: 253
Скачиваний: 0
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
49. Рефлекторные механизмы контроля фокусирования изображения на сетчатку и её освещенности.
Прежде чем попасть на сетчатку, световые лучи последовательно проходят через роговицу, жидкость передней камеры глаза, хрусталик и стекловидное тело, вместе образующие оптическую систему глаза. На каждом из этапов этого пути свет преломляется и в результате на сетчатке возникает уменьшенное и перевернутое изображение наблюдаемого предмета, этот процесс называется рефракцией. Преломляющая сила оптической системы глаза составляет около 58,6 диоптрий при рассматривании удаленных предметов и возрастает до приблизительно 70,5 диоптрий при фокусировании на сетчатку световых лучей, отраженных от близко распо¬ложенных предметов (1 диоптрия соответствует преломляющей силе линзы с фокусным расстоянием 1 м).
Аккомодация
Чтобы фокусировать на сетчатке световые лучи, отраженные от близко расположенных предметов, оптическая система глаза должна преломлять их тем сильней, чем ближе расположен наблюдаемый объект. Механизм, с помощью которого глаз настраивается на рассмотрение удаленных или близких предметов и в обоих случаях фокусирует их изображение на сетчатку, называется аккомодацией. Аккомодацию обеспечивают изменения кривизны хрусталика, зависимой от степени натяжения его тонкой и прозрачной капсулы, которая переходит по краям в циннову связку, прикрепляющуюся к ресничному телу. Гладкие мышцы ресничного тела, управляемые парасимпатическими нейронами, регулируют натяжение цинновой связки: при полном расслаблении мышц связка натягивает капсулу хрусталика, заставляя его принимать максимально уплощенную форму, необходимую для рассмотрения далеких предметов. При сокращении ресничных мышц натяжение цинновой связки уменьшается, хрусталик в силу своей эластичности принимает более выпуклую форму и поэтому сильнее преломляет световые лучи, что, например, происходит во время чтения этого текста. При максимальном сокращении ресничных мышц кривизна хрусталика становится максимальной, что позволяет фокусировать на сетчатке световые лучи, отраженные от ближайшей точки ясного видения. У детей эта точка расположена примерно в семи сантиметрах от глаза, но с возрастом эластичность хрусталика уменьшается, что ограничивает возможность увеличения его кривизны и соответственно преломляющей силы. В связи с возрастным уменьшением
диапазона аккомодации (интервала изменения преломляющей силы хрусталика) ближайшая точка ясного видения постепенно удаляется. Возрастное уменьшение аккомодационной способности (пресбиопия, или возрастная дальнозоркость) принуждает человека использовать при чтении очки с двояковыпуклыми линзами.
При наблюдении за движущимися в зрительном поле объектами, а также при движении человека относительно окружающего мира происходят следящие движения глаз, благодаря которым изображение в одной и той же области сетчатки сохраняется неизменным. При зрительном восприятии неподвижных объектов, имеющих многочисленные детали формы, а также во время чтения происходят быстрые движения глаз, предназначенные для фиксации наиболее информативных деталей объекта.
При рассматривании любых объектов глаза ежесекундно совершают около трех очень быстрых непроизвольных и субъективно не ощущаемых движений, которые называются саккадами. Благодаря таким движениям изображение на сетчатке регулярно смещается, вызывая раздражение разных фоторецепторов. Необходимость саккад объясняется свойством зрительной системы сильнее реагировать на изменяющееся раздражение (появление или исчезновение стимула), тогда как на постоянную стимуляцию она отвечает слабо. При проецировании на сетчатку постоянного изображения с помощью миниатюрного проектора, прикрепленного к контактной линзе, это изображение перестает восприниматься спустя несколько секунд, и вместо него в зрительном ощущении появляется сплошное серое поле. По истечении нескольких секунд восприятие проецируемого на сетчатку изображения восстанавливается, но затем снова исчезает и т. д.
Контроль освещенности – зрачковые рефлексы (воп. 50)
50. Зрачковые рефлексы, их значение.
Зрачковые рефлексы — непроизвольные сокращения (или же расслабления) гладкой мускулатуры радужной оболочки, приводящие к изменению величины зрачка. Различают рефлекторные зрачковые реакции (на свет, боль) и содружественные (на аккомодацию, конвергенцию). Ширина зрачка уменьшается при ярком свете благодаря сокращению кольцевых мышц, управляемых парасимпатическими волокнами глазодвигательного нерва, а при слабом освещении зрачок расширяется с помощью радиальных мышц, получающих симпатическую иннервацию. Уменьшая просвет зрачка, глаз защищается от избытка света, а увеличивая ширину зрачка, он повышает чувствительность зрительной системы к воспринимаемым стимулам. Сужение зрачков повышает глубину резкости, что позволяет лучше видеть удаленные предметы. При расширении зрачков глубина резкости снижается, а вместе с ней снижается острота зрения, которая характеризуется максимальной способностью глаза различать две соседние точки зрительного пространства как отдельные. В норме глаз различает две точки, видимые под углом в одну минуту при достаточно ярком освещении.
51. Молекулярные механизмы зрения. Фотохимические и биоэлектрические процессы в рецепторах сетчатки при действии света
Фоторецепторный слой сетчатки человека образован примерно 130 миллионами клеток, из которых около семи миллионов являются колбочками, основная масса которых сосредоточена в области центральной ямки, а все остальные фоторецепторы представлены палочками. У обеих разновидностей фоторецепторов существуют три функциональные области: 1) наружный, или внешний, сегмент, ориентированный в направлении эпителиального пигментного слоя и содержащий зрительный пигмент; 2) внутренний сегмент, в котором расположено клеточное ядро и происходят биохимические процессы, связанные с жизнедеятельностью клетки; 3) синаптические окончания, предназначенные для передачи информации от фоторецепторов к биполярным клеткам с помощью медиатора глутамата.
Зрительный пигмент палочек родопсин состоит из двух компонентов: это молекула ретиналя, образующаяся из витамина А и способная поглощать свет, а также крупная белковая молекула опсина, не поглощающая свет. Молекула опсина представляет собой извитую цепь из 348 аминокислот, которая семь раз проходит через мембрану зрительного диска, образованного из клеточной мембраны фоторецептора. В наружном сегменте фоторецептора имеется большое количество таких дисков, расположенных подобно стопке поставленных друг на друга монет. Ретиналь существует в темноте как 11-цис-ретиналь, такая форма изомера идеально соответствует упорядоченному расположению аминокислот в опсине. Энергия поглощенных фотонов превращает ретиналь в 11-транс-изомер, что приводит к конформационным изменениям молекулы опсина и превращению родопсина в нестабильный метародопсин, который сразу же распадается на ретиналь и опсин. Таким образом, действие света уменьшает концентрацию родопсина в фоторецепторе, что приводит к изменениям активности вторичных посредников и величины мембранного потенциала фоторецептора. В темноте происходит ферментативный ресинтез расщепленного родопсина, для которого используется витамин А, поступающий в организм человека с пищей.
Способность родопсина поглощать волны почти всего светового диапазона позволяет палочкам обеспечить только ахроматическое, т. е. черно-белое, зрение и лишает их возможности различать цвет -наиболее чувствительные фоторецепторы сетчатки, образуют
скотопическую систему, или систему ночного зрения.
Опсин колбочек отличается составом аминокислот, колбочки содержат меньшее количество зрительного пигмента - образуют фотопическую систему, или систему дневного зрения.
В сетчатке человека существуют три типа колбочек, различающихся между собой по составу аминокислот в опсине зрительного пигмента. Различия в белковой части молекулы определяют особенности взаимодействия каждой из трех форм опсина с ретиналем и специфическую чувствительность к световым волнам разной длины - восприятие всей цветовой палитры.
Биоэлектрические процессы. Специфической особенностью фоторецепторов является темновой ток катионов через открытые мембранные каналы внешних сегментов. Эти каналы открываются при высокой концентрации цГМФ, который является вторичным посредником рецепторного белка (зрительного пигмента). Темновой ток катионов деполяризует мембрану фоторецептора до приблизительно —40 мВ, что приводит к выделению медиатора в его синаптическом окончании. Активированные поглощением света молекулы зрительного пигмента стимулируют активность фосфодиэстеразы — фермента, расщепляющего цГМФ, поэтому при действии света на фоторецепторы в них уменьшается концентрация цГМФ. В результате управляемые этим посредником катионные каналы закрываются, и ток катионов в клетку прекращается. Вследствие непрерывного выхода ионов калия из клеток, мембрана фоторецепторов гиперполяризуется приблизительно до —70 мВ, эта гиперполяризация мембраны является рецепторным потенциалом. При возникновении рецепторного потенциала прекращается выделение глутамата в синаптических окончаниях фоторецептора.
Фоторецепторы образуют синапсы с биполярными клетками двух типов, различающихся по способу управления хемозависимыми натриевыми каналами в синапсах. Действие глутамата приводит к открытию каналов для ионов натрия и деполяризации мембраны одних биполярных клеток и к закрытию натриевых каналов и гиперполяризации биполярных клеток другого типа. Наличие двух типов биполярных клеток необходимо для формирования антагонизма между центром и периферией рецептивных полей ганглиозных клеток.
52. Функциональная характеристика палочковых и колбочковых фоторецепторов. Световая и темновая адаптация.
Функциональная характеристика палочковых и колбочковых фоторецепторов – воп.51, см. выше.
Временное ослепление при быстром переходе от темноты к яркому освещению исчезает спустя несколько секунд благодаря процессу световой адаптации. Одним из механизмов световой адаптации является рефлекторное сужение зрачков, другой зависит от концентрации ионов кальция в колбочках. При поглощении света в мембранах фоторецепторов закрываются катионные каналы, что прекращает вхождение ионов натрия и кальция и уменьшает их внутриклеточную концентрацию. Высокая концентрация ионов кальция в темноте подавляет активность гуанилатциклазы — фермента, определяющего образование цГМФ из гуанозинтрифосфата. Вследствие снижения концентрации кальция, обусловленного поглощением света, активность гуанилатциклазы повышается, что ведет к дополнительному синтезу цГМФ. Повышение концентрации этого вещества приводит к открытию катионных каналов, восстановлению тока катионов в клетку и, соответст¬венно, способности колбочек отвечать на световые раздражители как обычно. Низкая Концентрация ионов кальция способствует десенситизации колбочек, т. е. уменьшению их чувствительности к свету. Десенситизация обусловлена изменением свойств фосфодиэстеразы и белков катионных каналов, становящихся менее чувствительными к концентрации цГМФ.
Способность различать окружающие предметы исчезает на некоторое время при быстром переходе от яркого света к темноте. Она постепенно восстанавливается в ходе темновой адаптации, обусловленной расширением зрачков и переключением зрительного восприятия с фотопической системы на скотопическую. Темновую адаптацию палочек определяют медленные изменения функциональной активности белков, приводящие к повышению их чувствительности. В механизме темновой адаптации участвуют и горизонтальные клетки, способствующие увеличению центральной части рецептивных полей в условиях низкой освещенности.
53. Функции биполярных и ганглиозных клеток сетчатки. Формирование рецептивных полей с on-центрами и off-центрами, функции горизонтальных и амакриновых клеток.
Выходные сигналы, передаваемые в ЦНС от сетчатки, возникают только в ганглиозных клетках, импульсная активность которых зависит от возбуждения фоторецепторов, а затем биполярных клеток, входящих в округлое рецептивное поле ганглиозной клетки. Размер рецептивных полей и количество фоторецепторов, относящихся к одному рецептивному полю, варьируют от минимального в области центральной ямки до наибольшего на периферии сетчатки. Малые рецептивные поля служат для различения мелких деталей наблюдаемых объектов в тех случаях, когда соседние детали воспринимаются под углом в несколько угловых минут. Большие рецептивные поля вмещают изображение целого объекта, воспринимаемого под углом в несколько угловых градусов (1° соответствует рецептивному полю на поверхности сетчатки с диаметром около 0,25 мм).