Файл: 1. Понятие матрицы. Виды матриц. Транспонирование матрицы. Равенство матриц. Алгебраические операции над матрицами умножение на число, сложение, умножение матриц.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.04.2024

Просмотров: 88

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


6. Векторы. Операции над векторами (сложение, вычитание, умножение на число), n-мерный вектор. Понятие о векторном пространстве и его базисе.

В ектором назевается направленный отрезок с начальной точкой А и конечной точкой В (который можно перемещать параллельно самому себе).

Векторы могут обозначаться как 2-мя прописными буквами, так и одной строчной с чертой или стрелкой.

Длиной (или модулем) вектора называется число, равное длине отрезка АВ, изображающего вектор.

Векторы, лежащие на одной прямой или на параллельных прямых, называют коллинеарными.

Если начало и конец вектора совпадают ( ), то такой вектор называется нулевым и обозначается = . Длина нулевого вектора равна нулю:

= 0.

  1. Произведением вектора на число :

Будет вектор, имеющий длину , направление которого совпадает с направлением вектора , если , и противоположно ему, если .

  1. Противоположным вектором - называется произведение вектора - на число (-1), т.е. - = .

  2. Суммой двух векторов и называется вектор , начало которого совпадает с началом вектора , а конец с концом вектора , при условии, что начало совпадает с концом . (правило треугольников). Аналогично определяется сумма нескольких векторов.

  3. Разностью двух векторов и называется сумма вектора и вектора - , противоположного .

Скалярное произведение

Определение: Скалярным произведение двух векторов и называется число, равное произведению длин этих векторов на косинус угла между ними:



n-мерный вектор и векторное пространство

Определение. n-мерным вектором называется упорядоченная совокупность n действительных чисел, записываемых в виде х = (х12,…,хn), где хii-я компонента вектора х.

Понятие n-мерного вектора широко используется в экономике, например, некоторый набор товаров можно охарактеризовать вектором х = (х12,…,хn), а соответствующие цены у = (у
12,…,уn).

- Два n-мерных вектора равны тогда и только тогда, когда равны их соответствующие компоненты, т.е. х=у, если хi = уi, i = 1,2,…,n.

- Суммой двух векторов одинаковой размерности n называется вектор z = x + y, компоненты которого равны сумме соответствующих компонент слагаемых векторов, т.е. zi = xi + yi, i = 1,2,…,n.

- Произведением вектора х на действительное число называется вектор , компоненты которого равны произведению на соответствующие компоненты вектора , т.е. , i= 1,2,…,n.

Линейные операции над любыми векторами удовлетворяют следующим свойствам:

1) - коммутативное (переместительное) свойство суммы;

2) - ассоциативное (сочетательное) свойство суммы;

3) - ассоциативное относительно числового множителя свойство;

4) - дистрибутивное (распределительное) относительно суммы векторов свойство;

5) - дистрибутивное относительно суммы числовых множителей свойство;

6) Существует нулевой вектор такой, что для любого вектора (особая роль нулевого вектора);

7) Для любого вектора существует противоположный вектор такой, что ;

8) для любого вектора (особая роль числового множителя 1).

Определение. Множество векторов с действительными компонентами, в котором определены операции сложения векторов и умножения вектора на число, удовлетворяющее приведенным выше восьми свойствами (рассматриваемым как аксиомы), называется векторным состоянием.

Размеренность и базис векторного пространства

Определение. Линейное пространство называется n-мерным, если в нем существует n линейно независимых векторов, а любые из векторов уже являются зависимыми. Другими словами, размерность пространства – это максимальное число содержащихся в нем линейно независимых векторов. Число n называется размерностью пространства и обозначается .

Совокупность n линейно независимых векторов n-мерного пространства называется базисом.


  1. Собственные векторы и собственные значения матрицы. Характеристическое уравнение матрицы.

Определение. Вектор называется собственным вектором линейного оператора
, если найдется такое число , что:



Число называется собственным значением оператора (матрицы А), соответствующим вектору .

Можно записать в матричной форме:

, где - матрица-столбец из координат вектора , или в развернутом виде:

Перепишем систему так, чтобы в правых частях были нули:

или в матричном виде: . Полученная однородная система всегда имеет нулевое решение. Для существования ненулевого решения необходимо и достаточно, чтобы определитель системы: .
Определитель является многочленом n-й степени относительно . Этот многочлен называется характеристическим многочленом оператора или матрицы А, а полученное уравнение – характеристическим уравнением оператора или матрицы А.

Пример:

Найти собственные значения и собственные векторы линейного оператора , заданного матрицей .

Р е ш е н и е: Составляем характеристическое уравнение или , откуда собственное значение линейного оператора .

Находим собственный вектор , соответствующий собственному значению . Для этого решаем матричное уравнение:

или , или , откуда находим: , или

, или .

Предположим, что , получим, что векторы , при любом являются собственными векторами линейного оператора с собственным значением .

Аналогично, вектор .

8. Система п линейных уравнений с п переменными (общий вид). Матричная форма записи такой системы. Решение системы (определение). Совместные и несовместные, определенные и неопределенные системы линейных уравнений.

Решение системы линейных уравнений с неизвестными

Системы линейных уравнений находят широкое применение в экономике.

Система линейных уравнений с
переменными имеет вид:

,

где ( ) - произвольные числа, называемые коэффициентами при переменных и свободными членами уравнений, соответственно.

Краткая запись: ( ).

Определение. Решением системы называется такая совокупность значений , при подстановке которых каждое уравнение системы обращается в верное равенство.

  1. Система уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если она не имеет решений.

  2. Совместная система уравнений называется определенной, если она имеет единственное решение, и неопределенной, если она имеет более одного решения.

  3. Две системы уравнений называются равносильными (эквивалентными), если они имеют одно и то же множество решений (например, одно решение).

Запишем систему в матричной форме:

Обозначим: , где

А – матрица коэффициентов при переменных, или матрица системы, Х – матрица-столбец переменных, В – матрица-столбец свободных членов.

Т.к. число столбцов матрицы равно числу строк матрицы , то их произведение:



Есть матрица-столбец. Элементами полученной матрицы являются левые части начальной системы. На основании определения равенства матриц начальную систему можно записать в виде: .

Теорема Крамера. Пусть - определитель матрицы системы, а - определитель матрицы, получаемой из матрицы заменой -го столбца столбцом свободных членов. Тогда, если
, то система имеет единственное решение, определяемое по формулам:

, - формула Крамера.

Пример. Решить систему уравнений по формулам Крамера



Р е ш е н и е. Определитель матрицы системы . Следовательно, система имеет единственное решение. Вычислим , полученные из заменой соответственно первого, второго, третьего столбцов столбцом свободных членов:



По формулам Крамера:

.


9. Метод Гаусса решения системы n линейных уравнений с п переменными. Понятие о методе Жордана – Гаусса.

Метод Гаусса - метод последовательного исключения переменных.

Метод Гаусса заключается в том, что с помощью элементарных преобразований строк и перестановок столбцов система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которой последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные.

Преобразования Гаусса удобно проводить не с самими уравнениями, а с расширенной матрицей их коэффициентов , получаемой приписыванием к матрице столбца свободных членов :

.

Следует отметить, что методом Гаусса можно решить любую систему уравнений вида .

Пример. Методом Гаусса решить систему: