Файл: 1. Понятие матрицы. Виды матриц. Транспонирование матрицы. Равенство матриц. Алгебраические операции над матрицами умножение на число, сложение, умножение матриц.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.04.2024

Просмотров: 90

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
, то решение системы дает единственную точку пересечения прямых.

15. Общее уравнение прямой на плоскости, его исследование. Условия параллельности и перпендикулярности прямых.

Общее уравнение прямой и его исследование

Рассмотрим уравнение прямой с угловым коэффициентом . Перенесем все слагаемые в левую часть и перепишем его в следующем виде:

,

- (3.6)

общее уравнение прямой, где и не равны нулю одновременно, т.е. .

Рассмотрим частные случаи уравнения (3.6).

  1. Пусть . Тогда уравнение можно записать в виде: . Обозначим .

Если , , то получим (уравнение прямой с угловым коэффициентом);

Если , , то (уравнение прямой, проходящей через начало координат);

Если , , то (уравнение прямой, параллельной оси Оу);

Если , , то (уравнение оси Ох).

  1. Пусть , . Тогда уравнение примет вид . Обозначим .

Если , то получим (уравнение прямой, параллельной оси Оу);

Если , то (уравнение оси Оу).

Т.о., при любых значениях коэффициентов , (не равных одновременно нулю) и уравнение есть уравнение некоторой прямой линии на плоскости Оху.

- общее уравнение прямой.

Условия параллельности и перпендикулярности двух прямых:

Если прямые и параллельны, то угол и , откуда из формулы угла между двумя прямыми
. И наоборот, если , то по этой же формуле и .

Т.о., равенство угловых коэффициентов является необходимым и достаточным условием параллельности 2х прямых.

- условие параллельности двух прямых.

Если прямые перпендикулярны, то , при этом или , откуда или .

Справедливо так же и обратное утверждение.

Т.о., для перпендикулярности прямых необходимо и достаточно, чтобы их угловые коэффициенты были обратны по величине и противоположны по знаку.

- условие перпендикулярности двух прямых.

Если две прямые заданы уравнениями в общем виде: и ,то учитывая их угловые коэффициенты и , условие параллельности прямых имеет вид: .

Следовательно, условием параллельности прямых, заданных общими уравнениями является пропорциональность коэффициентов при переменных.

Условие перпендикулярности прямых в этом случае примет вид или ,

Т.е. условием перпендикулярности двух прямых, заданных общими уравнениями, является равенство нулю суммы произведений коэффициентов при переменных х и у.

16. Предел последовательности при и предел функции при . Признаки существования предела (с доказательством теоремы о пределе промежуточной функции).

Предел числовой последовательности


Определение. Если по некоторому закону каждому натуральному числу поставлено в соответствие вполне определенное число , то говорят, что задана числовая последовательность :

.

Другими словами, числовая последовательность - это функция натурального аргумента: .

Числа называются членами последовательности, а число - общим или -м членом данной последовательности.

Примеры числовых последовательностей:

1) (монотонная, неограниченная),

2) (не монотонная, ограниченная)

3)

Рассмотрим числовую последовательность , изобразив ее точками на числовой оси (рис.4.1):



Видно, что члены последовательности с ростом как угодно близко приближаются к 0. При этом абсолютная величина разности становится все меньше и меньше.


Определение. Число называется пределом числовой последовательности , если для любого, даже сколь угодно малого положительного числа , найдется такой (зависящий от ), что для всех членов последовательности с номерами верно неравенство:

.

Обозначают: . Или при .

Последовательность, имеющая предел, называется сходящейся, в противном случае – расходящейся.

Предел функции в бесконечности и в точке

Предел функции в бесконечности: С понятием предела числовой последовательности тесно связано понятие предела функции в бесконечности. Если в первом случае переменная возрастая, принимает лишь целые значения, то во втором случае переменная , изменяясь, принимает любые значения.

Определение. Число называется пределом функции при стремящемся к бесконечности, если для любого, даже сколь угодно малого положительного числа
, найдется такое положительное число (зависящее от ), что для всех таких что , верно неравенство:

.

Это предел функции обозначается: или при .

Можно сформулировать понятие предела при стремлении к бесконечности определенного знака, т.е. при и при . В первом случае основное неравенство: должно выполнятся для всех таких, что , а во втором – для всех таких, что .

Предел функции в точке: Пусть функция задана в некоторой окрестности точки , кроме, быть может, самой точки .

Определение. Число называется пределом функции при стремящемся к