Файл: Автоматизация_Staroverov1.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 19.07.2024

Просмотров: 271

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Глава 1. Общие свединья

1. Основные понятия и определения

Глава 2. Первичные преобразователи

6. Фотоэлектрические первичные

Глава 3. Усилители и стабилизаторы

Глава 4. Переключающие устройства и распределители

Глава 5. Задающие и исполнительные устройства

Глава 6. Общие сведения об измерении и контроле

Глава 7. Контроль температуры

Глава 8. Контроль давления и разрежения

Глава 9. Контроль расхода, количества и уровня

Глава 11. Системы автоматики

Глава 12. Автоматическая блокировка и защита в системах управления

Глава 13. Системы автоматического контроля и сигнализации

Глава 14. Системы автоматического

Глава 15. Объекты регулирования и их свойства

Глава 16. Типы регуляторов

Глава 17. Конструкции и характеристики регуляторов

Раздел IV

Глава 18. Общая характеристика

Глава 19. Математическое и программное обеспечение микроЭвм

Глава 20. Внешние устройства микроЭвм

Глава 21. Применение микропроцессорных систем

Раздел V

Глава 22. Общие сведения

Глава 23. Конструкции промышленных роботов

Глава 25. Роботизация промышленного производства

Раздел IV

Глава 1н, общая характеристика микропроцессорных

4. Гидравлические и пневматические

Контрольные вопросы и задания

  1. Что называется измерениями и как они подразделяются?

  2. Расскажите о Международной системе единиц измерения (СИ).

  3. Что такое абсолютная погрешность и как она определяется?

  4. Какие бывают виды погрешностей?

  5. Как определяется класс точности прибора и что он характеризует?

  6. Как классифицируются методы измерения?

  7. Расскажите о классификациях измерительных приборов.

  8. Что понимают под поверкой прибора?


Глава 7. Контроль температуры

  1. ТЕМПЕРАТУРНЫЕ ШКАЛЫ. КЛАССИФИКАЦИЯ ТЕХНИЧЕСКИХ ПРИБОРОВ И УСТРОЙСТВ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ

Температура является одним из основных параметров, определяющую ход и продолжительность многих процессов в ли­тейных и термических цехах. Точная оценка температуры опреде­ляет эффективность автоматического управления. Многообразие поставленных задач обусловило появление и развитие большого числа разнообразных методов и устройств измерения температуры.

Под температурой понимается величина, характеризующая теп­ловое состояние тел и определяемая количеством внутренней кине­тической энергии теплового движения молекул.

Измерить температуру, подобно тому как измеряют длину, массу или объем, нельзя, так как.температуры не складываются. Не существует такой единицы температуры, которой можно непо­средственно измерять любую температуру, подобно тому как метром измеряют любую длину. Длина, масса и объем — примеры экстенсивных (количественных) свойств системы. Если металли­ческий стержень разделить на несколько частей, температура каждой из них от этого не изменится. Температура — пример интенсивных (качественных) свойств системы. Следовательно, для измерения температуры необходимо использовать объективную связь между температурой и любой экстенсивной величиной: из­менением объема, длины и т. п.

В" настоящее время предусматривается применение двух тем­пературных шкал: термодинамической и международной практи­ческой.

Термодинамическая шкала базируется на втором законе тер­модинамики, связывающим количество содержащегося в теле тепла, с его температурой. Эта шкала была предложена в сере­дине прошлого века английским ученым Томсоном, получившим за свои научные открытия титул лорда Кельвина, и носит в на­стоящее время его имя. Температуру, измеряемую по этой шкале, обозначают буквой Т, за единицу в ней принят кельвин — К- Термодинамической эта шкала называется потому, что измерение температуры проводится на основании термодинамического закона работы идеального теплового двигателя по циклу Карно. Один градус по термодинамической шкале соответствует повышению температуры, которое равно 1/100 части работы по циклу Карно между точками плавления льда и кипения воды. Такой подход к определению одного градуса был обусловлен сохранением преем­ственности со стоградусной шкалой Цельсия.


В производственной практике наиболее широко используется Международная практическая температурная шкала 1968 г. (МРТП—68), которая совпадает с термодинамической шкалой и позволяет расширить температурный диапазон работы приборов. Она установлена для интервалов температур 13,81 ... 6300 К-

При измерении разности температур градус Цельсия (°С) в точности равен Кельвину, но в Международной практической шкале за 0 °С принята температура тающего льда при нормальном атмосферном давлении, а температура кипящей воды при том же давлении принята за 100 °С. Для перехода от температуры в кель­винах (Т) к температуре в градусах Цельсия (£) и наоборот служит формула

Т = t + 273,15.

Для измерения температуры твердых, жидких и газообразных сред на практике используется большое число разнообразных устройств, которые в общем носят названия термометров.

Все технические приборы по методу измерения температуры подразделяют на две группы: контактные и бесконтактные. К пер­вой группе относятся термометры расширения, монометрические, термоэлектрические термометры и электрические термометры со­противления (терморезисторы). Во вторую группу входят пиро­метры различного типа. Приведенная классификация положена в основу при рассмотрении приборов и устройств контроля тем­пературы.

  1. ТЕРМОМЕТРЫ РАСШИРЕНИЯ

. Как правило при повышении температуры тела увели­чиваются в объеме. Поэтому свойство изменять объем при нагреве или охлаждении может служить мерой его температуры. Приборы, работа которых основана на этом принципе, называют термометра­ми расширения; их подразделяют на три группы: жидкостные стеклянные, дилатометрические (стержневые] и биметаллические.

Принцип действия жидкостных стеклянных термометров осно­ван на различии коэффициентов объемного расширения жидко­сти (термометрические вещества) и стекла, используемого для удержания жидкости.

Жидкостные термометры представляют собой небольшой стек­лянный (реже кварцевый) резервуар (ампулу), верхняя часть ко­торого переходит в вертикальный капилляр.

Резервуар и частично капилляр заполнены термометрической жидкостью. Резервуар современных жидкостных термометров — вытянутый (или сплющенный) цилиндр. Диаметр капилляра вы­бирают в зависимости от диапазона и точности измерения темпе­ратуры. Чем выше точность термометра, тем меньше диаметр капилляра.


В зависимости от диапазона измерения в качестве термометри­ческой жидкости используют пентан (—200 ... +20 °С), петролей- ный эфир (—120 ... +25 °С), этиловый спирт (—80... +70 °С), толуол (—90 ... +200 °С), керосин (—60 ... +300 °С) и ртуть (—35 ... +750 °С).

При контакте с контролирующей средой термометр принимает ее температуру, а термометрическая жидкость нагревается или ох­лаждается, изменяя свой объем, т. е. уровень в капилляре. Именно по уровню жидкости судят о температуре.

Наиболее распространены ртутные термометры, что обуслов­лено целым рядом причин. Во-первых, ртуть остается жидкой в диапазоне температур —38 ... +350 °С при нормальном давле­нии и до +750 °С при небольшом повышении давления (для чего капилляр заполняется азотом) и обеспечивает высокую точность измерения. Во-вторых, ртуть легко поддается очистке, ее пары в ка­пилляре создают малое давление, она не смачивает стекло. По­следнее позволяет использовать капилляры с диаметром канала до 0,1 мм. Однако по сравнению с органическими жидкостями ртуть имеет в 8 раз меньший коэффициент объемного расширения, что естественно снижает чувствительность ртутных термометров (табл. 2).

Органические жидкости характеризуются в свою очередь меньшими стоимостью и вредностью в эксплуатации. Их приме­няют для измерения более низких температур. Вследствие смачи­вания стекла термометры с органическими жидкостями имеют меньшую точность измерения.

Для обеспечения задач позиционного регулирования и сигна­лизации температуры разработаны электроконтактные (ртутно­контактные) технические термометры двух типов: с постоянными контактами и подвижным верхним контактом.

Первый тип представляет собой ртутный термометр с впаян­ными в капилляр платиновыми контактами. Нижний (нулевой)

Таблиця 2

Технические характеристики стеклинных ртутных, термометров типа ТТ

Обозначение

Пределы измерения, °С

Цена

деления

шкалы,

°С

Длина нижней части, мм

Прямые

Угло­

вые

Прямые

Угловые

П-2

У-2

(—30 .

. +50)

0,5; 1

П-4

У-4

0 .

. 100

1

66; 103; 163;

104; 141; 201;

П-5

У-5

0 .

. 160

253; 403; 633;

291; 441; 671;

П-6

У-6

0 .

. 200

1003

1041

П-7

У-7

0 .

. 300

2

П-8

У-8

0 .

. 350

П-9

У-9

0 .

. 400

П-10

У-10

0 .

. 450

5

103; 163; 253;

104; 141; 201;

403

291

П-11

У-11

0 .

. 500

Примечания: 1. Длина верхней части термометров, приведенных в таблице, равна 240 мм. Термометры П-2—П-6 и У-2—У-6 с максимальной ценой деления шкалы выпускают с длиной верхней части 160 мм. 2. Диаметр верхней части термометра равен 20 мм, нижней — не более 8,5 мм. 3. Погрешность показаний термометров не превышает одного деления шкалы.


контакт находится ниже начала шкалы, а верхний (их может быть несколько) впаян на уровне отметки шкалы, которая соответствует контролируемой температуре. В электроконтактных термометрах второго типа перемещающийся верхний контакт изготовляют из тонкой вольфрамовой проволоки. Контакт перемещают внутри капилляра с помощью постоянного магнита. Такой термометр обычно оснащается двумя шкалами: верхней — для установки контакта на заданную температуру, и нижней, по которой произ­водится отсчет температуры.

Преимуществами жидкостных термометров являются простота их устройства и небольшая стоимость при относительно высокой точности показаний. К числу недостатков жидкостных термометров относятся значительная тепловая инерция (запаздывание показа­ний), невозможность автоматической регистрации и передачи на расстояние без дополнительных специальных приспособлений и низкая прочность. В литейных и термических цехах их исполь­зуют только для измерения температуры воздуха цеха, темпера­туры свободных концов термопары, для проверки приборов в лабораторных условиях, для измерения температуры охлажда­ющей жидкости в закалочных баках и ваннах и т. п.

Действие дилатометрических и биметаллических термометров основано на различии температурных коэффициентов линейного расширения твердых тел,а.

Таблица З Технические характеристики дилатометрических гермометров

Марка

Пределы измерения, °С

Допустимая погреш­ность, °С

Длина

чувстви­

тельной

трубки,

мм

ТуДЭ-1

—60

.. —40

+4

ГуДЭ-2

0

.. 100

+2,5

ТуДЭ-3

30

.. 100

+2,5

ГуДЭ-4

0

.. 250

+2,5

ГуДЭ-5

100

.. 250

+1,5

ГуДЭ-6

200

.. 500

+2,5

365

ТуДЭ-7

400

:. 1000

+1,5

465

ТуДЭ-8

0

.. 40

+4

і уДЭ-9

0

.. 100

+2,5

1ЧДЭ-10

30

.. 100

+4

265

Тудэ-п

30

,. 160

+4

туда-12

0

.. 250

+25