Если. на комплексной плоскости корней (рис. 5-4) провести в левой полуплоскости прямую, параллельную мнимой оси, на расстоянии а от нее и два луча из нача ла координат под углами ±cp= arcctgm к отрицательной полуоси, получим в левой полуплоскости шесть обла стей: области / и II, соответствующие составляющим переходного процесса системы со степенью устойчиво сти, меньшей а, и коэффициентом затухания колебаний, меньшим т; область III со степенью устойчивости, мень шей а, и коэффициентом затухания колебаний, большим т; области IV и V со степенью устойчивости, большей а, и коэффициентом затухания колебаний, меньшим т, и область VI со степенью устойчивости, большей а, и ко эффициентом затухания, большим т.
Следовательно, если требуется, чтобы система авто матического регулирования имела степень устойчивости больше а и коэффициент затухания колебательности больше т, необходимо, чтобы все корни характеристи ческого уравнения этой системы располагались внутри области. VI.
С помощью метода D-разбиения на плоскости двух переменных параметров ѵ и г| можно определить об ласти, в которых обеспечиваются заданная степень устойчивости а и коэффициент затухания т.
Как показано в § 4-6, подставив в характеристиче ское уравнение системы величину (/со) вместо операто ра р, выделив из коэффициентов полученного уравнения переменные параметры т) и ѵ и приравняв нулю вещест венную и мнимую составляющие левой части уравнения, мы получим уравнения (4-27) и (4-28) координат кри вой D-разбиения, которая является отображением мни мой оси комплексной плоскости (оси /со) на плоскости параметров ѵ и гр
Если же в характеристическом уравнении системы заменить символ р не величиной (/со), а велгічипой (—а + у'со), где а — заданная степень устойчивости систе мы, а затем повторить построение кривой D-разбиения, то полученная кривая отобразит на плоскости параме тров не мнимую ось, а прямую, параллельную ей и сдви нутую от нее влево на расстоянии а. Эта кривая огра ничивает область корней, вещественная часть которых меньше величины (—а), т. е. область, в которой степень устойчивости системы выше заданной.
Удаленность от мнимой оси корня, расположенного