Файл: Яковлев, В. В. Стохастические вычислительные машины.pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 15.10.2024
Просмотров: 115
Скачиваний: 0
где |
вероятность р 1(- — пропорциональна |
|
начальному |
значению |
||||||||||
Ф (At) i-то участка аппроксимации; p 2i — пропорциональна |
при |
|||||||||||||
ращению функции на участке аппроксимации; |
|
р 3 — пропорцио |
||||||||||||
нальна |
текущему значению |
I — s разрядной |
|
части |
числа А . |
|||||||||
Для любого г-го участка аппроксимации, таким образом, |
||||||||||||||
имеем 2l~s дискретных |
значений функции ф (А) |
|
при изменении А |
|||||||||||
в промежутке |
A t <^А <^А1 + 1 с |
шагом |
|
2~1, |
что соответствует |
|||||||||
изменению аргумента A t_s |
(текущего значения I — s разрядного |
|||||||||||||
|
|
|
|
|
числа А) |
с шагом 2~a ~s) в |
интервале |
|||||||
|
|
|
|
|
О—1. Так как |
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
р3 = А1-S, |
|
|
|
A—At |
|
||
|
|
|
|
|
|
|
а А ,_ = Ai+i — Af |
|
||||||
|
|
|
|
|
то |
|
|
Рз- |
A —Ai |
|
(3.34) |
|||
|
|
|
|
|
|
|
|
Ai+i — Ai |
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
При р з = |
0, когда мы |
находимся в на |
|||||||
Рис. |
51. |
К определению |
|
чале i + |
1 участка аппроксимации, |
|||||||||
|
|
|
|
Р (*) = Ф (Ai) = р и . |
|
(3.35 |
||||||||
вероятности р (г) |
на выходе |
|
|
|
|
|
||||||||
стохастического |
кусочно |
|
|
Определим теперь |
|
величину р 2[ из |
||||||||
линейного |
аппроксиматора |
|
|
|
||||||||||
стка |
аппроксимации |
|
условия, что для конца i |
+ 1 |
уча- |
|||||||||
Р (z) |
= |
Ф (Аг + 1) |
при |
р3 = 1 |
(рис. 51): |
|||||||||
|
|
|
Р (?) = ф(Л+i) = Ф(Ад тР-ц—Ф{Ai) p2lt |
|
|
|||||||||
откуда |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ф (^li+l) ' ' ф (A i) |
|
|
|
|
(3.36) |
|||
|
|
|
|
Р 21 |
|
1 — Ф ( Л £) |
|
* |
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|||||
Следовательно, |
учитывая |
(3.34), (3.35) и (3.36), |
найдем |
|
||||||||||
|
|
р (z) = Ф (At) + |
[ф (Ам ) — ф (А^ ] |
|
|
|
= |
|
|
|||||
|
|
|
= |
P u + P 2iPs ( 1 — Р и )- |
|
|
|
|
|
|
Таким образом, уравнения (3.32) и (3.33) тождественны, и уравнение (3.33) является уравнением аппроксимирующей лома ной линии.
Основу детерминированной части аппроксиматора составляет постоянное запоминающее устройство П З У , в котором хранятся начальные значения участков аппроксимации ф (At) и коэффи циенты наклона
у _ |
Ф ( A i +1) — 4>(Aj) |
1 |
1— Ф ( Л г) |
По первым s разрядам исходного числа А , определяющим номер участка аппроксимации, из П ЗУ производится выборка начального значения ф (А{) участка и коэффициента наклона
112
k'i. Заметим, что к\ не может быть больше единицы, так как в вы ражении (3.36) ср (А 1 +х) ^ 1. По этим данным и величине кода A Us производится вычисление р (z) = ф (А).
Поскольку вероятности р ±, р 2, р 3 изменяются дискретно, определим минимально и максимально возможное значение коэф
фициента наклона |
аппроксимирующей линии |
||||||||
|
|
|
|
, |
|
Аф (AQ __ p -и а |
— р ц ) Ар3 |
||
|
|
|
|
|
|
АА |
АА |
* |
|
где |
ДА = 2~1 — приращение |
аргумента; |
Дф (At) — приращение |
||||||
функции |
на |
участке |
аппроксимации: |
|
|||||
|
|
|
|
|
ь |
_ Г Аф Ш ) ~] |
_ |
п |
|
|
|
|
|
|
'*/ГП1П-- |
AA Jm in |
’ |
||
|
|
|
|
|
|
L |
|||
так |
как р я1min= 0; |
|
Аф (А {) |
|
|
|
|||
|
|
|
ктпЯХ |
|
Pti max ( 1 |
— P ll) Дрз |
|||
|
|
|
|
АА |
|
|
АА |
||
|
|
|
|
|
|
|
|||
Подставим |
в |
уравнение |
ктах |
значения |
|
||||
|
|
|
Др3 = |
|
р 21. |
2т |
— 1 |
||
|
|
|
|
2т |
|||||
|
|
|
|
|
|
|
|
||
где |
т — разрядность к\, и получим |
|
|
||||||
|
|
|
krr\3v |
■ |
2т — 1 (1 — р н ) 2' -U-s) |
(1—Ри) 2s- |
|||
|
|
|
2т |
|
2~1 |
|
|||
|
|
|
|
|
|
|
|
При Ри = 0 ктах = 2s, т. е. максимальный наклон аппроксими рующей линии определяется разрядностью s первой части пре образуемого кода А и тем больше, чем больше s.
Между своим минимальным и максимальным значениями коэффициент kt принимает дискретные значения, определяемые дискретностью задания p 2i:
ЛЬ |
A p2f (1 — Р и ) &Ря |
__ 2~та (1 — р ц ) 2~a ~s) |
1 — Ри |
1 |
дA |
2~l |
" 2m-s ' |
Следовательно, коэффициент наклона аппроксимирующей линии является функцией не только p 2i, Др3) Д^4> но зависит еще йот начального значения ф (А г) = Ри кусочно-линейной функции. Вследствие этого величины ктах и Дkt также зависят от началь
ного значения |
ф (А?) |
= р ц , |
причем |
|
|
|
|
П т ктях |
- П т Д&(- = 0. |
|
|
|
|
Pir-i |
|
|
|
При р и max = (2 "— 1)2_”, где п — разрядность параметра ф (^4г), |
|||||
|
|
к |
— ( 1 — 271—1 Д2s = 2s_n |
|
|
|
|
"-max — l А |
2n J |
|
|
Разрядность |
A = |
(0, a xa 2. . ,at) выбирается из |
условия |
||
получения |
заданной |
точности представления. Обычно |
точность |
||
8 В . В . |
Яковлев |
|
|
ИЗ |
представления функции принимается равной точности задания аргумента, а потому п = I. Тогда
Лф (^)max = h max A^max = (1 ~ Pit) 2S •2"S 1 - Pll,
ф ( A ) = P u + Аф (^)max = P i t + 1 — P i t = 1,
т. e. соотношение между kimax, s и Pll таково, что для любого значения ф (At) = p lt при максимальном приращении аргумента
Рис. 52. Возможные значе |
Рис. 53. |
К определению спо |
||
ния аппроксимирующей функ |
соба получения отрицательных |
|||
ции ф(/1) |
для четырех участ |
наклонов |
аппроксимирующей |
|
|
ков аппроксимации |
|
линии ф(А) |
|
Д Л т ах = |
2 - s |
( ч т о соответствует длине одного участка аппрокси |
||
мации) значение функции ф (А + |
Д-4тах) может быть сколь угодно |
|||
близким |
к |
единице (рис. 52). |
|
|
Количество разрядов s аппроксиматора определяется исходя из требуемого числа участков аппроксимации. Принимая за основу второй метод аппроксимации (рис. 49, б), можно записать
ААтау Akt «£ 2е;
с другой стороны, |
|
|
|
bA maxMct = ± ^ |
2 ~ |
s. |
(3.37) |
Выражение (3.37) максимально при Pli |
= 0, |
тогда |
|
2-s , 2-(m-s) = 2-т 2б) |
|
||
откуда |
|
|
|
m = 1°^ |
• |
|
(3.38) |
При кусочно-линейной аппроксимации функций часто возни кает задача получения прямолинейных отрезков с отрицатель ными коэффициентами наклона (рис. 53). Для этой цели исполь зуется инверсный выход устройства р (у). Схема выходного блока аппроксиматора представлена на рис. 54. Управление выдачей вероятностей р (у) = р (z) или р (у) = 1 — р (z) осуществляется
114
сигналом от п + т + 1 разряда П ЗУ , используемого для коди рования знака наклона. Если состояние этого разряда 0, то функ ция является возрастающей на данном участке аппроксимации, если состояние разряда 1, то воспроизводится убывающая функ ция.
То, что действительно реализуются коэффициенты наклона с отрицательными значениями, видно из следующих рассуждений:
При р з = |
1 —р (z) = |
1 - |
ри - |
р2(. (1 - Ри) р3' |
|
||
0 |
|
|
|
|
|
||
при р з = |
1 — р (z) = |
1 — р и = |
ф (А ;), |
|
|||
1 |
|
|
|
|
|
||
1 ~ |
Р («) = 1 —Ри - Ра/ (1 - |
Ри) = ф |
г) - Ра/Ф (At) = |
Ф (Ai+1). |
|||
Отсюда |
|
„ _ ф ( Л *) — ф ( Л г+1) |
|
ф ( 4 ; ) - ф ( 4 г-+1) . |
|||
|
|
|
|||||
Таким |
образом, |
|
|
|
|
|
|
|
|
1 —Р (*) = Ф (Л) - |
[ф (4;) - |
ф (Ам )\ |
• |
*/= “ Ра/
Следовательно, выводы относительно /с* аналогичны тому, что было уже показано для к[.
Точность преобразования. Вследствие дискретности входной переменной выходная непрерывная случайная переменная — час
тота |
появления |
единиц в |
|
||||
выходящей |
последователь |
|
|||||
ности — будет |
иметь набор |
|
|||||
математических |
ожиданий — |
|
|||||
вероятностей |
в |
соответствии |
|
||||
с дискретностью |
задания |
|
|||||
входной переменной. |
|
||||||
В |
идеальном |
аппрокси- |
|
||||
маторе каждому |
исходному |
|
|||||
числу |
А |
соответствует точ |
Рис. 54. Схема образования участков |
||||
ное |
значение |
вероятности |
|||||
аппроксимации с отрицательным коэф- |
|||||||
р {А), |
хотя |
действительная |
фициентом наклона |
||||
случайная |
переменная будет |
|
|||||
более |
или |
менее |
отличаться |
|
от р (Л), так как для точного преобразования необходимо прово дить бесконечное число испытаний.
Допустим, что дискретные значения ф (А,) и ф (Лг + 1) аппрок симирующей функции заданы с той же точностью, что и входная переменная А . При этом возможны два случая:
1) |
Ф(Лг) = ф(Лг-), |
|
2) |
Ф (At) = |
Ф(Л,-) + Ф(Л,-+1) |
|
|
2 |
8 * |
115 |
В первом случае ошибка представления равна нулю. Во втором случае возникающая ошибка представления не превышает зна
чения |
= 2~ll+li . |
Итак, если ф (А) задана с точностью в I разрядов, то
|ф(И;) - Ф ( И 1-)| ^ 2 -(г+1>. |
(3.39) |
Если под ф (Aft понимать частоту события со (И,), то действи тельная ошибка может возрасти до 2~1. Таким образом, сохране ние точности выходной переменной (равной точности входной переменной) происходит только в идеальном аппроксиматоре, так как в реальном устройстве невозможно выполнить условие
Р [и (^ ) - Ф (4 ,)^ 2 - « + » 1 = Рд,
где р д — доверительная вероятность (см. стр. 21).
Поэтому в реальном ФП можно потребовать: если преобразуе мое число задано /-разрядным двоичным кодом, необходимо, чтобы
погрешность представления не превышала |
|
|ф {At) — Ф (А{) j = Д =5 2“<1+2). |
(3.40) |
Таким образом, процесс синтеза кусочно-линейного аппроксиматора можно представить в виде следующей последовательности операций:
1) определение количества участков линейной аппроксимации зависимости Ф (И). Т. е. нужно выбрать такое s, чтобы А ^
^ 2~ (1+ 2);
2) |
определение |
разрядности |
п я т |
регистров Рг1 и Рг2 |
(рис. |
50) для задания p lt- и р г1. |
|
||
При этом численные значения ф (А{) и к\ определяются: |
||||
для убывающих |
функций: |
|
|
|
|
|
1 |
ф Ш |
|
|
|
ф( (И) = |
1 — ф(И4); |
|
для возрастающих функций:
,,Ф(Лр — ф(Л,ч-1)
1 |
1 — ф ( A t) |
* |
Фг (Л) = ф(Иг), |
||
где ф (А{) — значение ф (А) |
в точке |
Ар, ф* {А) — информация, |
заносимая в ячейку ЗУ.
Пример. Определить основные параметры кусочно-линейного аппроксиматора, реализующего зависимости вида:
Фг (А) = e~iA, Ф2 ( A ) = s m ± A , АЕ (0, 1).
Погрешность представления етах^ 0 ,5 % .
116