Файл: Баренбойм, А. Б. Малорасходные фреоновые турбокомпрессоры.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 17.10.2024

Просмотров: 186

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

На прокладку. Из условия совместности

деформации

прокладки

и болтов следует

_

 

 

 

 

 

 

Q i k

W n

 

 

 

 

 

zF6E6

FnEn

 

 

 

 

 

"

 

 

 

 

где /б, /^б,

Е6— длина, площадь,

модуль

упругости

болта и

1„, Fa,

Еп— то же для прокладки (пружины).

 

 

Введем

обозначение

С

 

 

 

 

 

 

ЕПЕП

т.

 

 

(187)

 

 

Л,

 

 

 

 

 

 

 

 

 

В данном случае т зависит,

главным

образом,

от

отношения

жесткостей прокладки и болтов и называется к о э ф ф и ц и е н т о м

о т н о с и т е л ь н о й ж е с т к о с т и

прокладки. Таким образом,

Q = Qi +

Q iH i.

Следовательно,

 

У

Qi 1 in

п

Qm

Q2 = 1+ m

Для того чтобы была обеспечена плотность соединения, необ­ ходимо выполнить условие, чтобы сила, сжимающая проклад­ ку zQ3aT, была больше силы, ее растягивающей Q2, т. е.

 

 

 

 

^QsaT

Q2

 

 

 

 

или,

подставляя

значение Q2,

получим

 

 

 

 

 

 

 

 

Q .w >

 

Qm

 

 

 

 

или

 

 

 

z (1

+

m)

 

 

 

 

 

 

 

 

Qm'Ji

 

 

 

 

 

 

 

 

 

 

 

 

(188)

 

 

 

 

Q:jaT

 

z(l +m)

'

 

 

 

 

 

 

 

 

 

 

где

ß

называется

к о э ф ф и ц и е н т о м

и з б ы т о ч н о й

з а ­

т я жк и .

Усилие,

действующее на болт,

будет (см. рис. 76)

 

 

 

 

 

Qfi — ~~~

Q3ат

 

 

 

или, подставляя

сюда

значения

Qt

и Q3aT,

получим

 

 

 

 

 

Qfi =

 

+ ß«

_У_

 

(189)

 

 

 

 

1+ т

Z

 

 

Сопоставляя формулу (189) с формулой (160)

и замечая, что

Q

есть внешняя нагрузка, приходящаяся

на один

болт, получим

 

 

 

 

 

Ь — , 1-{- 3/д

 

 

(190)

 

 

 

 

^зат —

I

 

 

 

 

88



 

 

 

 

 

 

 

 

Т а б л и ц а iö

т

0,1

0,2

0,5

1

2

5

10

Характер нагрузки

 

10

7

4

3

2

1,7

1,5

Постоянная

 

10

7

4

3

2,5

2,2

2

Переменная

тогда нагрузка на прокладку и соединяемые детали будет

Qm

Qn ^Qaat Qi = Г+"лг (? 1 ).

(191)

Рекомендуемые значения коэффициен­ та т в зависимости от коэффициента относительной жесткости приведены в табл. 16.

Если соединяемые элементы состоят из нескольких последовательно работа­ ющих слоев (например, фланца, про­ кладки) с различными характеристи­ ками, то коэффициент относительной жесткости т должен определяться по формуле

т =

(192)

zFf,E6 V

Ik

 

FhEk

Рис. 77. К определению коэффициента относитель­ ной жесткости

где k — число

последовательно

соединенных

элементов.

В тех же случаях,

когда

определение

коэффициента т за­

труднительно,

а также для предварительных расчетов, значения k.m

и Q.,.,T можно

выбирать

по данным табл. 17.

Т а б л и ц а 17

 

 

 

 

Характер соединения

Для соединений, в которых требуется особая герметичность, например: фланцевые сое­ динения трубопроводов, крепление крышек сосудов, находящихся под давлением и дру­ гих аналогичных соединений .............................

Для фундаментных болтов и анкерных связей

Для соединений металлических конструкций без

прокладок...............................................

Переменная

Постоянная

нагрузка

нагрузка

kзат

С^зат

&зат

Ф зат

Q

Q

 

 

2

1

2

1

2

1,5

1,8

1,3

2

2

1,5

1,5

89


Случай переменной внешней нагрузки

Допустим, что внешняя нагрузка изменяется по любому асим­ метричному циклу, характеризующемуся коэффициентом несимметрии

Qm іи

Qmax

где Qn,i„ и Qmax — минимальная и максимальная внешние нагрузки, действующие на болт, винт или шпильку. Тогда на основании предыдущего

п

Qmim

-

r1Q Q max

_

V im in

\ + т

 

 

+ т

'

__

Q m ax

 

 

 

ltnax

j _[_

т

 

 

 

 

Усилие затяжки Q:iaT является усилием постоянным и определя­ ется в зависимости от максимальной нагрузки, т. е. по форму­ ле (188)

 

Qmt = r q r ^ ^ max

(считая г = 1).

Следовательно, нагрузка на соединительную деталь будет

 

г \

__

Qmax

I

 

іах

_ 1

/-\

 

Ѵ б т а х -

1

_ ! . т Л-

х + т

 

1 + т Ѵ т а х

II

 

 

 

 

 

Ѵ б т і п

r 0 Q max

OTf)Qmax

 

rQ + }m

Vmax-

 

] +

/„

- Г

] +

/n

 

- 1 + я г

Таким

образом,

коэффициент

несимметрии нагрузки на болт,

а значит,

и напряжений,

будет

=

 

 

 

 

 

 

°

=

Qöm in

1

т

ЫП

(193)

 

 

 

 

 

 

 

r Q

+

\i m

Об max

Как было показано в § 16, с увеличением коэффициента не­ симметрии допускаемое напряжение увеличивается. Следователь­ но, при переменной нагрузке надо стремиться к увеличению коэффициента гй. Из формулы (193) видно, что с увеличением увеличивается г6. Так,

при

3т =

0

г6 = rQ,

при

[іт

со

гб —> 1.

Но увеличивать ß нецелесообразно, так как нагрузка на болт (формула 189) при увеличении ß возрастет значительно больше, чем при увеличении т. Следовательно, влиять на коэффициент несимметрии гб целесообразно путем увеличения коэффициента т.

Таким образом, даже если внешняя нагрузка Q меняется по симметричному циклу, то, увеличивая tu, можно значительно увели­

90


чить коэффициент несимметрии нагрузки гб и тем самым увеличить допускаемое напряжение.

Увеличения т можно достигнуть увеличением жесткости про­ кладки (или соединяемых элементов), или уменьшением жесткости соединительных деталей. Увеличить жесткость соединяемых эле­ ментов часто не представляется возможным. Поэтому прибегают к уменьшению жесткости соединительных деталей. Однако, чтобы не ослаблять при этом резьбовую часть, применяются так назы­ ваемые «упругие болты», в которых стержень болта имеет умень­ шенный диаметр (см. рис. 54).

Уменьшение диаметра стержня не влияет на прочность болта в целом (при переменных напряжениях), так как в гладкой части стержня почти отсутствуют концентрация напряжений (они име­ ются только в местах переходов). Для гладкой части коэффи­ циенты перехода k„ и kx можно принимать значительно меньшими, чем для резьбовой части, а именно:

Jfe,= l,5-*-2, & = 1,3-* 1,6.

§ 26. РАСЧЕТ БОЛТОВ ПРИ ДЕЙСТВИИ ИЗГИБАЮЩИХ МОМЕНТОВ

Болт с костыльной головкой

Необходимость применения такого болта диктуется тем, что часто в соединяемой детали нежелательно или невозможно сверлить отверстие (см. рис. 53), а в некоторых случаях не удается поместить нормальную головку болта (см. рис. 52). Один из примеров при­ веден на рис. 53, где показано крепление двутавровой балки. В этом случае на болт действует изгибающий момент M = Qa и сосредото­ ченная сила Q. Максимальное напряжение от изгибающего момента будет

Qc,a

W

где

Напряжение от растяжения

Полное напряжение

(194)

или

91

Из формулы (194) видно, что при эксцентричном приложении на­ грузки напряжение на болт во много раз больше того, которое было бы при действии одной осевой нагрузки.

Для учета наличия напряжений кручения в нарезке диаметр болта следует определить по расчетной нагрузке

Qp = ÄkpQ6( i + 8 — ),

(195)

где ÄKp = l , l . Действующая

нагрузка

на болт

определится по

формуле

^38tQ )

 

 

 

 

здесь величина к3„ принимается по данным табл. 17.

Изгиб при затяжке

В том случае, если торцовая поверхность головки болта или гайки не соприкасается всей своей поверхностью с соединяемой

Рис. 78. К расчету болтов под действием изги­ бающих моментов

деталью (рис. 78), точка приложения осевой силы при затяжке не будет находиться на оси болта, а будет несколько смещена, и вслед­ ствие эксцентрично приложенной нагрузки возникнет изгибающий

92