Файл: Казакевич, В. В. Автоколебания (помпаж) в компрессорах.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 19.10.2024

Просмотров: 128

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Полученные два соотношения

(6.41) и

(6.42)

связывают в

точке экстремума три величины: R, F и Д

Последнее соотноше­

ние тождественно удовлетворяется

при L = 1 +

С. При

этом

F = —R/L. Эти значения, как легко установить, также тождест­

венно удовлетворяют уравнениям

(6.36) — (6.38),

следовательно,

полученные значения F и L действительно характеризуют экст­

ремум.

 

 

 

 

 

__

Определим теперь в точке

экстремума F и R в функции С.

Подставим L = 1 + С в уравнения

 

 

 

 

Ф = 0 и

 

= 0,

 

(6.43)

 

 

dR

 

 

 

преобразуем систему к виду

 

 

 

 

 

 

Ф - о ,

 

* L - o .

 

(6.44)

dR

 

 

dR

 

 

 

Из 1-го уравнения находим

 

 

 

 

 

 

(1 + С ) —-j-(2FR + 1).

 

(6.45)

Подставляя это значение во 2-е уравнение,, имеем

 

RF =

— 1.

 

(6.46)

Выражения (6.41), (6.42) и (6.46) дают три уравнения отно­

сительно величин R, F и L в точке экстремума.

Разрешая

их,

находим,

 

 

 

 

 

 

^опт = 1 + С, RotlT = V 1 + С,

 

 

F0m— — !/===•

 

(6-47)

 

 

V l

+ C

 

 

 

Эти значения соответствуют экстремальной точке. Исследова­ ние выражения (6.39) показывает, что найденный экстремум является минимумом и, притом единственным.

Выясним физический смысл факта существования экстремаль­ ного значения сопротивления РАП. Для этого рассмотрим следу­ ющие соображения. Как при отсутствии на дросселе сопротивле­ ния Rz, так и при бесконечно большой величине /?2, рассеяния энергии на нем не происходит: в первом случае — потому что нет потерь, а во втором случае — потому что нет расхода. При про­ межуточных значениях #2 (0 < R2 < оо) на нем рассеивается ко­ лебательная энергия. Из соображений непрерывности функции

F = F(R, L, С) по всем параметрам следует, что должно суще­ ствовать такое (вообще говоря, не единственное) значение вели­ чины гидравлического сопротивления /?2, при котором рассеи­ вается максимальное количество колебательной энергии.

704


Физический смысл существования экстремального значения инерционного параметра L2, по-видимому, связан с резонансны­ ми явлениями в системе и может быть объяснен следующим образом.

Подставим найденные оптимальные значения параметров L, R и F из выражения (6.47) в уравнение движения (6.35). Тогда для границы устойчивости получим уравнение движения в виде

С( 1 + C)C\L\

+ С2Ц [1 ( 1 + С) - 1 ]

+ М = 0. (6.48)

at*

 

at2

Составляя характеристическое уравнение и решая его отно­ сительно (о2, находим собственные частоты системы на границе устойчивости:

©1 :

2

С

2

(6.49)

©2

©1 .

 

LtC,

1 + С

 

 

По одной из этих двух частот происходит возбуждение помпажа. Найдем эту частоту. Характеристическое уравнение на границе устойчивости может быть записано в виде

(Я2 + ©2)(*2 + М + &2) = о.

(6.50)

Оно определяет одно чисто мнимое решение, соответствующее периодическому движению в исходной системе. Сравнивая его с общей формой записи характеристического уравнения 4-й сте­ пени

k* + aik3 + a2k2 + a3k + a4= 0,

(6.51)

получаем

 

©2 = -H2_; to4— a2a2 + a4 = 0,

(6.52)

а исключая а2, будем иметь

 

аха2а3а\— aia4= 0.

(6.53)

Отсюда следует, что система находится на границе самовоз­ буждения, определяемой третьим условием устойчивости Льена-

ра — Шипара

(6.38). Выражения

(6.52) и (6.35) дают

 

 

а2

..2

R + F ( l + C )

.

(6.54)

 

— = © 1 ----------з —

 

 

ai

R + FL

 

 

где ©! = — —

— резонансная частота основной системы.

_Lfi,

_

 

 

 

 

При L — 1

+ С получается а = ©ь откуда следует,

что сис­

тема с РАП возбуждается всегда по наивысшей из двух собст­ венных частот.

Рассмотрим теперь электрическую аналогию (рис. 6.8). Эту схему можно представить как модель компрессорной системы

205


с РАП, показанной на рис. 6.7, так как обе они описываются аналогичными дифференциальными уравнениями (6.35). Резо­ нансные частоты контуров I и II на рис. 6.8 оказывается одина­
ковыми и равными он. Действительно, при L = 1 + С
Выбор сопротивления обеспечивает одинаковые собственные частоты контуров на границе самовозбуж­ дения, равные частоте возбуждения toi-_ _
Физический смысл существования L = LonT заключается в следующем. При L = Lonт оказываются одинаковыми резонанс­ ная частота процесса наполнения и опорожнения РАП и резо­ нансная частота процесса наполнения и опорожнения газосборника. Если, кроме того, взять R — Rom, то резонансные и собст­ венные частоты контуров I н II становятся равными частоте воз­ буждения, и настройка РАП оказывается точной.
Область устойчивой работы компрессора в сети с РАП, в ко­ тором установлены оптимальные параметры, при критическом режиме работы дросселя возрастает с увеличением присоеди­ ненной емкости Сг. Физически это объясняется тем, что энергия, рассеиваемая на гидравлическом сопротивлении РАП, пропор­ циональна среднему за полупериод перепаду давления на нем. При малом присоединенном объеме давление в нем будет уста­ навливаться на уровне, который следует за давлением в газосборнике, и энергия, рассеиваемая на Rz, будет невелика. При возрастании величины присоединенного объема давление в нем будет все в большей мере оставаться практически постоянным и равным среднему давлению в газосборнике. Следовательно, перепад давления на R2, расход воздуха через него, а значит, и диссипация энергии будут значительными.
Пусть теперь входной дроссель работает при докритическом перепаде давления: наклон его характеристики имеет конечную величину. При колебательном режиме рабочая точка перемещает­ ся по характеристике, а расход и давление оказываются пере­ менными. Чем меньше наклон характеристики дросселя, тем больше величина пульсации расхода через него и тем меньше
пульсации давления в газооборнике Ci. Может быть по­ казано, что при уменьшении наклона характеристики дрос­ селя величина оптимального сопротивления РАП монотонно возрастает и при некотором ко­ нечном значении наклона ха­ рактеристики дросселя дости­
Рис. 6.8 гает бесконечно большого зна-
206

чения. Этот режим работы дросселя является предель­ ным с точки зрения примене­ ния РАП; при дальнейшем раскрытии дросселя исполь­ зование РАП в системе те­ ряет смысл, поскольку сужа­ ет диапазон устойчивой ра­ боты компрессора в сети. Объяснить это можно тем, что уменьшение амплитуды пульсаций давления в газо-

сборнике, связанное с раскрытием дросселя, уменьшает рассеи­

вание энергии; в то же время становится

ощутимым

влияние

дополнительного

объема между дросселем и

компрессором,

уменьшающее диапазон устойчивой работы.

 

 

 

Величина наклона характеристики компрессора на границе

его устойчивости в системе, включающей

РАП,

определяется

выражением

 

 

 

 

дп*

1 + к*

 

= .

(6.55)

<?М„р

фМпр

 

 

 

 

£l

Lx

Это выражение, определяющее оптимальное значение пара­ метров для границы устойчивости компрессора, связывает значе­ ние наклона его характеристики на границе самовозбуждения

———с соответствующими значениями я* и Мпр. Выражение

дМпр

(6.55) показывает, что в основном граница устойчивости опреде­

ляется величиной

— ■ Поэтому крутизна характеристики

 

дМПр

компрессора влияет существенно на положение границы устой­ чивости работы компрессора в сети с РАП. Рассмотрим пример, приведенный на рис. 6.9. Характеристика компрессора имеет вид,

показанный на этом рисунке; система

характеризуется следую­

щими параметрами; Si =

0,07 м2; С =

1; V\ =

1 м3; L1 =

20 1/м.

При этом------- =t0,15.

Здесь расширение

диапазона

будет

дМпр

 

 

 

 

ДМпр = 0,1 кгс

 

 

 

 

м

Если же компрессор имеет характеристику, показанную на рис. 6.10, то при тех же параметрах системы расширение диапа­ зона устойчивой работы оказывается малым. На рис. 6.11 приве­ дена характеристика экспериментальной ступени. Расширение

207


диапазона устойчивой работы, вызванное постановкой в систему компрессора РАП, составит при этом 5% диапазона устойчивой работы в системе без РАП. На рис. 6.12 показаны графики опти­ мальных значений параметров

^опт 1 + С; RotlT= У I + С; Fom= —

, ■ _ ,

V

1 + с

построенные_в полулогарифмическом-масштабе координат. За­

висимость F = F(R) для различных значений L при С = 5 при­ ведена на рис. 6.13, где линия минимумов дана штрихпунктирной кривой.

6.5. ОБ ИЗМЕРЕНИЯХ ПРИ ПРОВЕДЕНИИ ЭКСПЕРИМЕНТОВ

Обычно, при экспериментальных исследованиях помпажа из­ меряется давление за компрессором и расход через какое-либо сечение системы (см., например [38]). Этих данных недостаточно, чтобы сколь-нибудь полно проанализировать поведение компрес­ сора с сетью.

Полученные результаты позволяют указать, какие измерения необходимо проводить при испытании компрессоров и вентиля­ торов, чтобы достичь следующих целей исследований:

а) построить характеристикувентилятора не только в облас­ ти устойчивых, но и в области неустойчивых режимов работы;

б) определить экспериментально коэффициенты La и Са, ха­ рактеризующие свойства вентилятора с сетью;

в) построить предельные циклы на фазовой плоскости. Перечень измерений следующий.

1. Нужно снять осциллограммы полного давления рк за вен­ тилятором и объемного расхода QK через него во время помпа­ жа или во время какого-либо переходного процесса, охватываю­ щего неустойчивую зону. Так как непосредственно определить объемный расход трудно, можно измерить скоростной напор за вентилятором и далее пересчитать его на объемный расход.

2.Записать на осциллографе полные давления перед выход­ ным и за входным дросселями.

3.Очень желательно получить характеристику при отрица­ тельных расходах, ее можно снять путем подачи напора воздуха

ввыходной дроссель.

Если при снятии характеристики компрессора помпаж очень интенсивен или вообще недопустим, можно снять характеристику при достаточно малом числе оборотов, когда помпаж мал или совсем отсутствует, и затем пересчитать характеристику на но­

минальное число оборотов.

Все измерения необходимо производить достаточно мало­ инерционными датчиками.

14 З а к а з 1516

209