Файл: Дьярмати, И. Неравновесная термодинамика. Теория поля и вариационные принципы.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 19.10.2024

Просмотров: 80

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Литература

301

91.Gyannati /., Zs. phys. Chem., 239, 133 (1968).

92.Finlayson B. A., Scriven L. E., Journ. Heat Mass Trans., 10, 799 (1967).

93.Glansdorff P„ Physica, 32, 1745 (1966).

94.Donelly R. ]., Hermann R., Prigogine /., Non-Equilibrium Ther­

modynamics, Variational Techniques and Stability, Chicago, 1966.

95.Holmes C. F., Mortimer R. G., Ind. Eng. Chem. Fundam., 6, 321 (1967).

96.Goleman B. D., Curtin M. E., ZAMP, 18, № 2, 199 (1966).

97.Vlncze Gy., Diplomarbeit, Budapest, 1968.

98.Дьярмати И., Докторская диссертация, М., 1967.

Дополнительная литература

Gyarmatl /., Zs. Phys. Chem., 239, 133 (1968). Sândor Acta Chim. Hung., 67, 303 (1971). Sândor /., Electrochim. Acta, v. 17, 673 (1972). Vlncze Gy., Ann. Phys., 7, 27, 225 (1971). Vincze Gy., Acta Chim. Hung., 75, 33 (1972). Verhâs Zs. Phys. Chem., 249, 119 (1972).

Farkas H., Noszticzius Z., Ann. Phys., 7, 27, 341 (1971).

ОГЛАВЛЕНИЕ

Вступительная

статья ........................................................................

 

5

Предисловие к русскому изданию .....................................................

20

Из

предисловия

к

венгерскому

изданию ...................

22

Из

предисловия

к

английскому

изданию ........................

23

Введение .........................................................

 

 

 

25

ЧАСТЬ 1

ТЕОРИЯ ПОЛЯ И ТЕРМОДИНАМИКА

Глава

I. Основные

понятия

теории

поля

. . .

29

§

1.

Задача классической

теории

поля.

Деформация . . .

29

§

2.

Н епреры вность...................

 

 

 

31

§ 3. Д в и ж е н и е .................................

и пространственное

опи сан ие

32

§ 4.

Материальное

34

§

5.

Уравнение

непрерывности материи

и массы . . . . .

39

§ 6.

Многокомпонентные

континуум ы

..........................................

42

Глава

П. Уравнения

б а л а н с а ..............................................................

 

 

47

§

 

1.

Общие уравнения баланса

.....................................................

 

47

§

 

2.

Уравнения

баланса

м а с с ы ......................................

.

58

§

 

3.

Уравнения

баланса

заряда

....................................................

 

63

§

 

4.

Уравнения

д в и ж е н и я .................................

 

 

65

§

 

5.

Уравнения

баланса

и м п у л ьс а ...............................................

■ •

71

§

 

6.

Механическое равновесие...........................................

 

81

§

 

7.

Уравнения

баланса

момента количества движения .

. 83

§

 

8.

Уравнения

баланса

кинетической

э н е р г и и ...................

88

§

 

9.

Уравнения

баланса

потенциальной

энергии . . . . .

96

§ 10. Уравнения баланса механической энергии ...................

99

Глава ІИ. Термодинамика континуума

 

103

§

1.

Локальные

формы первого и второго законов . . . .

101

§

2.

Сохранение энергии и уравнения баланса внутренней

 

 

энергии ..................................

 

 

 

 

 

.113


Оглавление

3 0 3

§ 3.

Уравнения баланса энтропии и производство энтропии 121

§

4.

Линейные

кинематические

конститутивные

уравнения

.

127

§

5.

Соотношения

взаи м н ости ...................

 

........................136

 

 

 

 

 

 

 

ЧАСТЬ 2

 

 

 

 

 

 

 

ВАРИАЦИОННЫЕ ПРИНЦИПЫ

 

 

 

О вариационных

принципах

в о о б щ е

.................................................

 

 

 

142

Глава

IV. Принцип наименьшего рассеяния эн ер ги и ...................

 

114

§

1.

Неравновесные

потенциальные

функции . . . . .

.

143

§ 2.

Локальные формы принципа..................................................

 

 

 

.

149

§

3.

Гауссова

форма локального принципа . . . . . .

155

§

4.

Применение локального принципа для проблем при­

159

§ 5.

нуждения

....................................................................................

формы

п р и н ц и п а

 

 

 

Интегральные

 

 

 

165

Глава

V. Принцип минимального производства энтропии

. *

.

177

§

1.

Стационарные

состояния не непрерывных

систем . ..177

§

2.

Формулировка принципа для непрерывных систем .

. 186

§

3.

Связь между

 

принципами

Онсагера и Пригожина .

 

. 188

§

4.

П р и м ен ен и я

................................

 

 

 

.... . .

. .......................191

§ 5.

Обобщения

 

.....................................

 

 

 

 

 

 

 

201

Глава VI. Интегральный принцип термодинамики

..........................

 

 

205

§

1.

Вывод уравнения

Ф у р ь е ......................

принципа

■ . .

 

 

206

§

2.

Формулировка

интегрального

. ..218

§ 3.

Вывод уравнений Фика для изотермической диффузии

. 220

§

4.

Вывод общего уравнения движения гидродинамики .

 

.226

§ 5.

Неизотермические

уравнения

п е р ен о са .......................

 

 

233

§ 6.

Вывод уравнений

переноса в общем в и д е ..................

 

237

§

7. Соотношение между интегральным принципом и принци­

 

§ 8.

пом Г а м и л ь т о н а .............................................................

 

 

 

 

 

. 243

Термодинамика

в

каноническом в и д е .................................

 

 

 

249

§ 9.

Заключение

............................................................................

 

 

 

 

 

 

 

 

259

Приложение. Элементы тензорного исчисления...............................

 

 

 

261

§

1.

Основные

положения

и простейшие операции . . .

.

262

§

2.

Симметрические

и

антисимметрические тензоры . .

.

263

§ 3.

Тензорное

прои зведени е

.......................................................

 

 

 

 

264

§

4.

Тензорные производные .

....................................................... 267


30 4

 

 

Оглавление

 

 

 

 

 

д о п о л н е н и е

 

 

Об основном принципе процессов рассеяния и его обобщении на

268

нелинейные

задачи .

 

 

A. Общая

формулировка «основного принципа процессов

268

Б.

рассеяния» и вывод уравнений переноса...............................

 

Парциальные

формы интегрального принципа . . . .

273

B. Нелинейные

задачи

 

в случае нели­

282

Г. Справедливость вариационного принципа

287

Д.

нейных

проблем . . .

.................................. . . . . .

Дополнительная теорема

и квазилинейная

теория . . .

289

Е. О функциональном формализме В о й т ы ...............................

 

293

Литература

.............................................................................................

 

 

 

298

И. Д ь я р м а т и

НЕ Р А В Н О В Е С Н А Я Т Е Р М О Д И Н А М И К А

Ре д а к т о р И. Г. Нахимсон

Х у д о ж н и к М.

Н. Мержеевский

Х у д о ж е ств е н н ы й

р е д а к т о р

Е. К Самойлов

Т е х н и ч е с к и й

р е д а к т о р

Л. П. Бирюкова

 

 

К о р р е к т о р

Е. К. Монякова

С д а н о в

н а б о р 27 /Ѵ ІІІ

1973 г.

 

 

П о д п и с а н о к

п еч ати 6 /ІІ

1974 г.

Б у м а г а

д /г л .

печ . 84 Х 1087 з!=4,75

бум . л.

15,96

у е л . печ . л .,

 

У ч .-и зд . л .

14,16.

 

 

•И зд . №

2/7037

Ц е н а

1 р.

23 к ,

З а к .

787

 

 

 

 

И З Д А Т Е Л Ь С Т В О « М И Р »

 

 

 

 

 

 

 

М о с к в а , 1-й Р и ж с к и й п е р ., 2

 

 

 

 

 

О р д е н а Т р у д о в о го К р ас н о го З н ам ен и

 

 

 

Л е н и н г р а д с к а я т и п о гр а ф и я № 2 и м ен и Е в ген и и

С о ко л о во й С о ю зп о л и гр аф п р о м а

 

при Г о с у д а р ств ен н о м

к о м и тете С о вета М и н и стров

С С С Р

 

 

по д е л а м и зд а т е л ь с т в , п о л и гр а ф и и и к н и ж н о й то р го в л и

 

 

 

198052, Л е н и н г р а д ,

Л -52, И зм а й л о в с к и й

п р о сп ек т ,

29,

 


'j f


■V '

о

I

■ІІ

7