Файл: Курс лекций по дисциплине Теория систем и системный анализ, читаемый автором в соответствии с учебными планами специальностей 351400 Прикладная информатика.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 03.02.2024
Просмотров: 468
Скачиваний: 0
СОДЕРЖАНИЕ
Требования ГОСТ специальности к содержанию курса.
1. ИСТОРИЯ СТАНОВЛЕНИЯ И РАЗВИТИЯ ОБЩЕЙ ТЕОРИИ СИСТЕМ
2. Предмет и содержание общей теории систем
3. ОСНОВНЫЕ положения ОбщеЙ теории систем
3.1. Основные понятия системного анализа
3.2. Определение понятия «система»
3.3. Принципы системного подхода
4.1. Категория системы, ее свойства и признаки
4.2. Системообразующие и системоразрушающие факторы
4.3. Классификация системных объектов
4.4. Структура, функции и этапы развития систем
5. СИСТЕМНЫЕ ОБЪЕКТЫ И ИХ ОБОБЩЕННАЯ ХАРАКТЕРИСТИКА
5.1. Системность неорганической и живой природы
5.2. Общество, личность и мышление как система
6. СИСТЕМНЫЕ ИССЛЕДОВАНИЯ КАК СОСТАВНАЯ ЧАСТЬ ОБЩЕЙ ТЕОРИИ СИСТЕМ
6.1. Общая характеристика системных исследований
6.2. Системный подход - методология системного исследования
6.3. Технология достижения целостности познания в системном исследовании
7. Сущность и принципы системного подхода
7.1. Принципы системного подхода.
7.2. Проблемы согласования целей
7.3. Проблемы оценки связей в системе
7.4. Пример системного подхода к задаче управления
7.5. Моделирование как метод системного анализа
7.6. Процессы принятия управляющих решений
8. ОПИСАНИЕ СИСТЕМНЫХ ОБЪЕКТОВ
8.1. Механизм процесса описания системных объектов
8.3. Структура системного анализа
8.4. Методы и модели описания систем
Качественные методы описания систем
Количественные методы описания систем
8.5. Формирование общего представления системы
8.6. Кибернетика и ее роль в описании систем
9.2. Содержательная постановка задачи
9.3. Построение модели изучаемой системы в общем случае
9.4. Моделирование в условиях определенности
9.5. Наличие нескольких целей - многокритериальность системы
9.6. Моделирование системы в условиях неопределенности
9.7. Моделирование систем массового обслуживания
9.8. Моделирование в условиях противодействия, игровые модели
9.9. Моделирование в условиях противодействия, модели торгов
9.10. Методы анализа больших систем, планирование экспериментов
9.11. Методы анализа больших систем, факторный анализ
10. МЕТОДЫ ОПЕРЕЖАЮЩЕГО УПРАВЛЕНИЯ В СИСТЕМАХ
10.1. Причинно-следственный анализ
10.2. Процесс причинно-следственного анализа.
10.3. Варианты причинно-следственного анализа
10.5. Процессы принятия решений различных типов
10.6. Анализ плана управленческой работы и обзор ситуации
11. МОДЕЛИРОВАНИЕ И ПРОЕКТИРОВАНИЕ ИНФОРМАЦИОННЫХ СИСТЕМ
11.3. Практическое применение системного подхода в экономике
12. СИСТЕМНАЯ природа организаций и управления ими
12.2. Виды и формы системного представления структур организаций.
ГЛОССАРИЙ ТЕРМИНОВ ТЕОРИИ СИСТЕМ И СИСТЕМНОГО АНАЛИЗА
12.2. Виды и формы системного представления структур организаций.
Обычно понятие структура связывают с графическим изображением. Однако это не обязательно. Структура может быть представлена в матричной форме, в форме теоретико-множест-венных описаний, с помощью языка топологии, алгебры и других средств моделирования систем.
Сетевая структура или сеть (рис. 12.1а) представляет собой декомпозицию системы во времени.
Такие структуры могут отображать порядок действия технической системы (телефонная сеть, электрическая сеть и т. п.), этапы деятельности человека (при производстве продукции - сетевой график, при проектировании - сетевая модель, при планировании - сетевой план и т. д.).
В виде сетевых моделей будут представляться методики системного анализа в последующих главах.
При применении сетевых моделей пользуются определенной терминологией: вершина, ребро, путь, критический путь и т. д. Элементы сети могут быть расположены последовательно и параллельно.
Сети бывают разные. Наиболее распространены и удобны для анализа однонаправленные сети. Но могут быть и сети с обратными связями, с циклами.
Рис. 12.1.
Для анализа сложных сетей существует математический аппарат теории графов, прикладная теория сетевого планирования и управления, имеющая широкую распространенность при представлении процессов организации производства и управления предприятиями.
Иерархические структуры (рис. 12.1.б - д) представляют собой декомпозицию системы в пространстве. Все компоненты (вершины, узлы) и связи (дуги, соединения узлов) существуют в этих структурах одновременно (не разнесены во времени). Такие структуры могут иметь не два (как показано на рис. 12.1.б и в), а большее число уровней декомпозиции (структуризации).
Структуры типа рис. 12.1.б, в которых каждый элемент нижележащего уровня подчинен одному узлу (одной вершине) вышестоящего (и это справедливо для всех уровней иерархии), называют древовидными структурами, структурами типа «дерева», структурами, на которых выполняется отношение древесного порядка, иерархическими структурами с «сильными»' связями.
Структуры типа рис. 12.1.в, в которой элемент нижележащего уровня может быть подчинен двум и более узлам (вершинам) вышестоящего, называют иерархическими структурами со «
слабыми» связями.
Иерархическим структурам, приведенным на рис. 12.1.б - в, соответствуют матричные структуры рис. 6.1.е-ж. Отношения, имеющие вид «слабых» связей между двумя уровнями на рис. 12.1.в, подобны отношениям в матрице, образованной из составляющих этих двух уровней на рис. 12.1.ж.
Наибольшее распространение имеют древовидные иерархические структуры, с помощью которых представляются конструкции сложных технических изделий и комплексов (рис. 12.2.), структуры классификаторов и словарей, структуры целей и функций, производственные структуры (рис. 12.3.), организационные структуры предприятий.
Иерархии со «слабыми» связями применяют в тех случаях, когда цели сформулированы слишком близко к идеальным устремлениям и недостаточно средств для их реализации (см. гл. 4), для представления некоторых видов организационных структур (см. например линейно-функцио-нальные структуры, вертикальные связи в структуре управления государством на рис. 12.10).
Рис. 12.2. Рис. 12.3.
В общем случае термин иерархия означает соподчиненность, порядок подчинения низших по должности и чину лиц высшим, возник как наименование «служебной лестницы» в религии, широко применяется для характеристики взаимоотношений в аппарате управления государством, армией и т.д., затем концепция иерархии была распространена на любой согласованный по подчиненности порядок объектов.
Поэтому, в принципе в иерархических структурах важно лишь выделение уровней соподчиненности, а между уровнями и между компонентами в пределах уровня, в принципе, могут быть любые взаимоотношения. В соответствие с этим существуют структуры, использующие иерархический принцип, но имеющие специфические особенности, и их целесообразно выделить особо.
Многоуровневые иерархические структуры. В теории систем М. Месаровича предложены особые классы иерархических структур типа «страт», «слоев», «эшелонов», отличающиеся различными принципами взаимоотношений элементов в пределах уровня и различным правом вмешательства вышестоящего уровня в организацию взаимоотношений между элементами нижележащего.
Учитывая важность этих видов структур для решения проблем управления предприятиями в современных условиях многоукладной экономики, для проблемы проектирования сложных систем, остановимся на их характеристике несколько подробнее.
Страты. При отображении сложных систем основная проблема состоит в том, чтобы найти компромисс между простотой описания, позволяющей составить и сохранять целостное представление об исследуемом или проектируемом объекте, и детализацией описания, позволяющей отразить многочисленные особенности конкретного объекта. Одни из путей решения этой проблемы - задание системы семейством моделей, каждая из которых описывает поведение системы с точки зрения соответствующего уровня абстрагирования. Для каждого уровня существуют характерные особенности, законы и принципы, с помощью которых описывается поведение системы на этом уровне. Такое представление названо стратифицированным, а уровни абстрагирования - стратами.
В качестве простейшего примера стратифицированного описания приведем отображение ЭВМ в виде двух страт, нижняя – физические операции (система описывается на языке физических законов, управляющих работой и взаимодействием механических и электронных элементов), верхняя – математические и логические операции (программирование и реализация программ с помощью абстрактных понятий, информационные потоки).
Примером стратифицированного описания может также служить рассмотренное выше выделение уровней абстрагирования системы от философского или теоретико-познавательного описания ее замысла до материального воплощения (рис. 12.4).
Т
Рис. 12.4
акое представление помогает понять, что одну и ту же систему на разных стадиях познания и проектирования можно (и нужно) описывать различными выразительными средствами, т.е. как бы на разных «языках»: философском или теоретико-познавательном - вербальное описание замысла, концепции: научно-исследовательском - в форме моделей разного рода, помогающих глубже понять и раскрыть замысел системы; проектном - техническое задание и технический проект, для разработки и представления которого могут понадобиться математические расчеты, принципиальные схемы; конструкторском - конструкторские чертежи, сопровождающая их документация; технологическом - технологические карты, стандарты и другая технологическая документация (конструкторская и технологическая страты могут быть объединены); материальное воплощение, реализация системы - детали, блоки, собранное изделие или созданная система, принципы функционирования которой отражены в соответствующей нормативно-технической и нормативно-методической документации (инструкциях по эксплуатации, положениях и т.п.).
П
Рис. 12.5
ример использования такого представления при проектировании системы управления предприятиями и организациями будет приведен ниже.
Страты могут выделяться по разным принципам. Например, при представлении системы управления предприятием страты могут соответствовать сложившимся уровням управления: управление технологическими процессами (собственно производственным процессом) и организационное управление предприятием. Если предприятие входит в объединение, то к этим двум стратам может быть добавлен уровень управления объединением. Этот же принцип может быть положен в основу выделения страт в структуре функциональной части АСУ.
Стратифицированное представление может использоваться и как средство последовательного углубления представления о системе, ее детализации, (рис. 12.5).
Чем ниже опускаемся по иерархии страт, тем более детальным становится раскрытие системы; чем выше поднимаемся, тем яснее становится смысл и значение всей системы. Объяснить назначение системы с помощью элементов нижней страты в сложных системах практически невозможно.
Например, изучение принципов построения и функционирования отдельных клеток организма, каким бы детальным оно ни было, не позволяет понять построение и функционирование органов, которые состоят из •этих клеток, а изучение органов не позволяет полностью понять функционирование всего организма в целом. Но, с другой стороны, чтобы правильно понять и реализовать общий замысел системы, сконструировать систему, необходимо реализовать нижележащие страты.
С казанное отображает в структуре суть одной из основных закономерностей теории систем - закономерности целостности, что помогает приблизить теоретические исследования закономерностей к практическому их применению.
Н
Рис. 12.6
ачинать изучение системы можно с любой страты (в том числе, с находящейся в середине стратифицированного представления). В процессе исследования могут добавиться новые страты, изменяться подход к выделению страт. На каждой страте может использоваться свое описание, своя модель, но система сохраняется до тех пор, пока не изменяется представление на верхней страте - ее концепция, замысел, который нужно стремиться не исказить при раскрытии на каждой последующей страте.
Слои. Второй вид многоуровневой структуризации предложен М. Месаровичем для организации процессов принятия решений. Для уменьшения неопределенности ситуации выделяются уровни сложности принимаемого решения - слои, т.е. определяется совокупность последовательно решаемых проблем. При этом выделение проблем осуществляется таким образом, чтобы решение вышележащей проблемы определяло бы ограничения (допустимую степень упрощения) при моделировании на нижележащем уровне, т. е. снижали бы неопределенность нижележащей проблемы, но без утраты замысла решения общей проблемы.
Многослойную иерархию можно проиллюстрировать рис.12.7: каждый слой представляет собой блок DI, принимающий решения b вырабатывающий ограничения Xi, для нижележащего (I - 1)-го блока.
В качестве примера рассмотрим многослойную иерархию принятия решения по управлению каким-либо процессом. В ней можно выделить три основных аспекта проблемы принятия решения в условиях неопределенности, приведенные на рис. 12.8.
Рис. 12.7. Рис. 12.8.
Нижний слой, самых «близкий» к управляемому процессу, - слой выбора. Задача этого слоя - выбор способа действий т. Принимающий решения элемент (блок) получает данные (информацию) об управляемом процессе и, применяя алгоритм, полученный на верхних слоях, находит нужный способ действия, т.е. последовательность управляющих воздействий на управляемый процесс. Алгоритм может быть определен непосредственно как функциональное отображение D, дающее решение для любого набора начальных данных.
Многослойные системы принятия решений полезно формировать для решения задач планирования и управления промышленными предприятиями, отраслями, народным хозяйством в целом. При постановке и решении таких проблем нельзя раз и навсегда определить цели, выбрать конкретные действия: экономические и технологические условия производства непрерывно изменяются. Все это можно отразить в многослойной модели принятия решений.
Примером приложения идеи выделения слоев могут служить многоуровневые экономико-математические модели планирования и управления отраслями