Файл: Сопротивление материалов пластическому деформированию Инженерные расчеты процессов конечного формоизменения материалов..pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 29.02.2024
Просмотров: 268
Скачиваний: 3
бешка — о пропорциональном в данной точке нормальном на пряжении сжатия. В результате проведенных экспериментов установлено, что при обжатии образцов с торцевыми цилиндри ческими выточками, заполненными смазкой, следует различать две основные стадии пластической деформации. Ее начальную стадию — при достижении напряжения порядка предела теку чести металла, неодинакового.на контактной поверхности напря женного состояния (на буртиках несколько большего по сравне нию с областью торцевой выточки). Это объясняется превосход ством модуля упругости буртиков по сравнению с таковым сма зочного слоя. Однако, учитывая, что площадь буртиков составляет в начальной стадии деформации всего 3—5% от общей площади торцевой поверхности образца, напряжения, возникающие в зоне выточки, будут несущественно отличаться от усредненных. После смятия буртиков начинается вторая стадия — процесс объемного деформирования образца с образованием «бочки». С этого момента распределение нормальных напряжений принимает другой *ха рактер — начинают существенно возрастать нормальные напря жения в центральной части контактных площадей образцов с де формирующими плитами машины, т. е. начинает формироваться распределение нормальных напряжений, характерное для случая осадки образцов с плоскими несмазанными торцами.
Напряжения на торцевой поверхности в начальной стадии обжатия определялись путем решения уравнений равновесия совместно с условием пластичности, а во второй стадии — по известной формуле Зибеля—Губкина, установленной для случая обжатия в торец цилиндрического образца с гладкими торцами.
Как показали результаты многочисленных экспериментов, проведенных на цилиндрических образцах с выточками (на разных металлах, разной формы и смазках), ошибка (исключая визуаль ные ошибки и погрешности инструментария и обработки) в опре-, делении интенсивности напряженного состояния обжатия состав
ляет не |
свыше 3%. |
Приведем краткие данные по размерам буртиков. |
|
Для |
цилиндрических образцов с исходным диаметром d0 — |
= 7,0 |
30,0 мм ширину буртика рекомендуется принимать равной |
и0 = 0,5*0,8 мм; причем большие значения и0 следует устанав ливать для более пластичных материалов.
Первоначальная высота h0 буртиков зависит от механических свойств материала, учитываемых коэффициентом Пуассона со гласно уравнению
и«оМ- ( I — 0,25ц2)
П° ~ |
1—ц |
Приведем значения р для некоторых металлов:
и
Углеродистые стали с повышенным содержанием марган |
|
ца 20 Г, ЗОГ, 40Г, 50Г, 60Г ................................................ |
0,22 |
Стали Х13, 2X13, З О Х Н М ........................................................ |
0,27 |
Ж елезо, малоуглеродистые стали и высоколегированные
стали типа |
3X13, 20Н5, |
З О Х Н З .......................................... |
0,28 |
Цинк, стали |
с большим |
содержанием углерода, |
сталь |
4 0 Х Н З ............................................................................................. |
|
|
0,29 |
Хром, м о л и б д ен ............................................................................. |
|
0,31 |
|
Алюминий, дюралюминий, |
н и к е л ь .......................................... |
0,33 |
|
Титан, магниевые сп л авы ............................................................... |
|
0,34 |
|
С е р е б р о .................................................................................................. |
|
|
0,37 |
М е д ь ................................................................................................... |
|
|
0,375 |
З о л о т о .............................................................................................. |
|
|
0,42 |
С в и н е ц .............................................................................................. |
|
|
0,44 |
6. Напряженно-деформированное состояние цилиндров, испытуемых на обжатие
При осевом обжатии цилиндров между плоскопараллельными бойками (плитами) направление наиболее быстрого укорочения, приближенно совпадает с направлением действия сжимающей силы, т. е. с направлением оси OZ.
Среднее по высоте значение компонента скорости деформации в этом направлении
;' - * ' “ Т ¥ = ( ж ) » < 0' |
<7Л> |
где h — переменная во времени высота. Интегрируя, получаем
(е2)Ср = In (М 0) = — In (MO < 0.
• Интенсивность скорости деформации определится равенством
в |
< |
- |
] |
Л |
| |
+ |
- |
з |
- |
( |
* |
, |
- |
* |
* |
) |
* |
Если разность ег — е2 невелика по сравнению с абсолютным
значением е8, то вторым членом подкоренного выражения правой части равенства (7.2) можно пренебречь по сравнению с первым членом. При этом получаем
/Дч _ |
d Un (M O ] |
HO |
8 ,= |
Vfc*Vcp------------ |
|
Интегрируя, имеем
(ei) Cp = In (MO-
<k{ dt *
( 7 .3 )
Таким образом, если при обжатии тела плоскопараллельными бойками можно полагать, что разность двух положительных главных компонентов скорости деформации в большей части объема этого тела невелика по сравнению с абсолютным значением отри цательного главного компонента скорости деформации, то усред ненное по объему значение степени деформации можно принять равным In (hjh).
162
При этом интенсивность напряжений at можно условно счи тать постоянной по объему тела, определяя ее значение по кри вой а,—ег в соответствии с усредненной степенью деформации, заданной равенством (7.3).
В этом отношении операция обжатия плоскопараллельными бойками является характерным примером пластического формо изменения, при котором можно (по крайней мере при приближен ном определении потребного усилия) принять интенсивность напряженного состояния ог постоянной по объему деформируе мого тела не только в горячем, но и в холодном его состоянии. Однако в последнем случае необходимо учитывать изменение о* при переходе из одной стадии процесса в другую.
Строго говоря, в процессе обжатия тела с плоскопараллель ными торцами интенсивность скорости деформации нельзя счи тать постоянной по объему, поскольку влияние сил трения на торцах обусловливает переменность деформированного состояния, а также переменность площади поперечного сечения ро высоте.
Тем не менее если речь идет только о приближенном вычисле нии потребного усилия обжатия, то условное допущение постоян ства площади поперечного сечения обжимаемого тела по высоте вполне приемлемо. Действительно, при обжатии относительно высоких цилиндров круглого сечения наблюдается явление бочкообразования: площадь поперечного сечения, делящего обжи маемый цилиндр на две равные части, оказывается заметно больше отношения объема к высоте, однако это обстоятельство практи чески не влияет на усилие обжатия, так как напряжения сжатия вдоль контура такого сечения значительно меньше, чем при ли нейном сжатии, благодаря наличию напряжений растяжения в тангенциальном направлении. Поэтому, вычисляя потребное усилие при обжатии круглого цилиндра, можно определять услов
ное |
значение F — площади поперечного |
сечения |
по формуле |
|
F = Foh,,/h, |
|
(7.4) |
где |
h — высота в рассматриваемой стадии |
обжатия; |
h0 и F0 — |
исходные значения высоты и площади. В этом случае можно при
нимать условно |
деформацию |
монотонной (линейное |
сжатие): |
||||
|
8i = |
е2; |
ei = Bi — In (hjh); ez — e8 = — e,. |
|
|||
При этом Ci = |
0 2; |
|
|
|
|
||
|
<*1 = |
|
У |
(— |
- |
<Уз)* + -j- (01 - 0i)2 = |
|
|
= |
' |
02 |
— 03 = |
01 — 08 = 02 — 08- |
(7.5) |
|
Значение |
можно считать постоянным по объему обжимаемого |
||||||
цилиндра. |
|
|
|
|
|
|
|
Однако величина гидростатического давления заведомо пере менна: она заметно возрастает по мере приближения к оси сим метрии, поскольку в осевой зоне увеличение размеров частиц в на правлениях, перпендикулярных направлению обжимающей силы, благодаря наличию сил трения на торцевых срезах затруднено.
Рассмотрим условие равновесия выделенного из обжимаемого цилиндра объема, ограниченного двумя меридиональными пло
скостями, образующими |
между собой |
малый |
а, |
двумя |
частями. |
||||
4р |
опорных |
площадок |
и |
двумя |
концент- |
||||
pr + -yf dr |
ричными |
поверхностями радиусов г и |
|||||||
|
г + dr (рис. |
31). |
|
|
хгг = тконт— |
||||
|
Полагаем |
|
аг — —рг и |
||||||
|
напряжения |
(нормальное |
и |
|
касатель |
||||
|
ное) на торцевых площадках, |
<тг = <т0= |
|||||||
|
= —рг — нормальные |
напряжения на |
|||||||
|
цилиндрических и меридиональных гра |
||||||||
|
нях выделенного объема. Приравнивая |
||||||||
|
нулю равнодействующую всех сил, при |
||||||||
|
ложенных к |
этому |
объему, |
имеем |
|||||
|
p /a /i - |
(pr+ |
dr ) |
(г -f- dr) ah + |
|||||
|
+ 2prh sin ~ |
dr — 2тконтга dr = 0. |
|||||||
|
Замечая, |
что |
(при |
малых |
|
/ |
|||
|
значениях |
||||||||
|
a) 2 sin a/2 = |
|
a, получаем |
|
после оче |
||||
|
видных |
сокращений |
|
|
|
|
|||
|
4 г Л~ 2 W = 0 . |
|
|
|
|
(7.6) |
Принимая во внимание равенство (7.5), имеем при принятых обозначениях рг — рг — a t. Полагая <тг постоянным по объему обжимаемого тела, имеем
dpz |
dpг |
2ткрнт |
dr * |
dr ~~ |
h • |
Контактное касательное напряжение при любых значениях радиуса г не может быть больше произведения fpz, где / — коэф фициент трения, а также не может быть больше
“W = К |
- <*з)/2. |
|
|
|
При обжатии круглого цилиндра можно |
принять тшах = о,/2. |
|||
Таким образом, имеем две зоны |
значений |
радиуса г: |
||
1) зона, в пределах которой |
тконт = |
fpz < |
a (/2; |
|
2) зона, в пределах которой |
тКОнт = |
а(/2 |
<: fpz. |
|
|
|
|
const = Сг. |
|
|
|
|
(7.7) |
Для |
второй зоны |
|
|
|
|
1 Г + "Г = () и Pz + |
x |
r==const==C2- |
(7-8) |
На границе первой и второй зон |
|
|
||
|
Тконт = fPz = O'./2» т- |
е- Рг = OJ2/. |
|
|
Кроме |
упомянутых двух зон, в |
непосредственной |
близости от |
оси симметрии располагается третья зона, в пределах которой ^конт < СГ//2 < fpz.
На самой оси симметрии (при г = 0) тконх = 0. |
Равнодействующее |
|||
обжимающее усилие |
|
|
|
|
|
VFIЯ |
(d,J2) ÿ~hjh |
|
|
Р — 2я |
| р / dr — 2л |
| |
р / dr. |
(7.9) |
|
0 |
0 |
|
|
При заданном равенствами (7.7) и (7.8) законе распределения значений удельного усилия рг по площади F выражение (7.9)
может быть приведено к виду |
|
P = FkfOi, |
(7.10) |
где F — см. равенство (7.4); k{ = -ф (ср, /) — так называемый коэффициент подпора, <р = d/h; о,- — усредненное по объему об жимаемого тела значение интенсивности напряжений, определяе мого по кривой о,- —» е( для данного материала в соответствии со
значением et |
[см. |
равенство (7.3)1; à = |
d0 Y h jh |
— диаметр |
|
окружности, |
площадь которой |
F. |
круглого |
цилиндра |
|
Значения |
kf — ф |
для случая |
обжатия |
могут быть определены по заранее составленной таблице в зави симости от двух аргументов: <р и f.
Рассмотрим примеры сопоставления опытных данных с ре зультатами вычислений усилий обжатия круглых цилиндров по формулам (7.3), (7.4) и (7.10) с использованием вспомогательной, таблицы значений kf = ф (ф, f).
Пример 1. |
Сталь 35Х (табл. 6). Ожидаемое значение коэффициента контакт |
|
ного трения f = |
0,30-5-0,35. |
|
Пример 2. |
Латунь Л62 (табл. 7). Ожидаемое значение коэффициента кон |
|
тактного трения / = |
0,15. |
|
Пример 3, Сталь |
Юкп (табл. 8), { = 0,25-5-0,35. |