ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 16.10.2024
Просмотров: 132
Скачиваний: 1
Пример. В табл. 1 приводятся данные, характеризующие чис ло деталей, необходимых для изготовления трех видов игрушек. Пусть Xi представляет число игрушек вида i (i = 1 , 2, 3), затребованных в за казе, a t/j — общее число деталей типа / (/ = 1 , 2, 3), необходимых для сборки игрушек при полном удовлетворении заказа на них. Тогда об щее число деталей может быть выражено в виде уравнений следующим образом:
|
Ух = |
Ахх + 6х2 + |
8х3; |
|
|
У2 = 2хг + 2х2 + Зх3; |
( 1) |
||
|
Уз — Х1 + Х2 + Х3' |
|
||
|
|
|
|
Таблица 1 |
|
Число деталей, |
необходимых для сборки игрушек |
||
|
Н а и м е н о в а н и е |
|
Тип игруш ки |
|
|
|
|
|
|
|
де т ал и |
1 |
2 |
3 |
|
|
|||
1. |
Колесо . . . . |
4 |
6 |
8 |
2. |
О с ь ................... |
2 |
2 |
3 |
3. |
Корпус . . . . |
1 |
1 |
1 |
Эти уравнения можно записать в матричном виде:
~У1 |
4 |
6 |
8 “ |
х2 |
или у = Ах. |
|
Уз |
2 |
2 |
3 |
(2) |
||
Уз |
1 |
1 |
1 |
х3 |
|
|
Таким образом, вектор игрушек преобразован путем умножения на
него |
матрицы А в вектор |
необходимых деталей. Говорят, что если |
эта |
матрица представляет |
собой линейное преобразование вектора л: |
в вектор у, то линейное преобразование записывается как
у = Ах.
Общее линейное преобразование у = Ах обычно служит для ха рактеристики того, что у может быть получен как преобразование х.
Продолжим предыдущий |
пример. |
Рассмотрим потребности в сырье |
|||||||
(пластмасса и сталь) при производстве |
каждой |
из |
деталей |
(см. |
|||||
табл. 2). |
Тогда, |
если mh (k = 1, |
2) показывает |
общее |
количество |
||||
материала |
типа |
k, необходимого |
для |
изготовления |
уг |
колес, |
у 2 |
||
осей и у з |
корпусов, то получим следующие уравнения: |
|
|
|
|||||
|
|
т1 = |
0,5г/х + |
0у 2 + |
3у 3, |
|
|
|
|
|
|
т -2 |
= Ог/i + |
1у 2 + |
1«/з- |
|
|
|
(3) |
50
|
|
|
|
Т а б л и ц а 2 |
|
Потребности в сырье, |
нужном для изготовления |
||||
|
|
деталей (в фунтах) |
|
||
М атер иал |
|
Тип детали |
|
||
1 |
2 |
3 |
|||
|
|
||||
1. П л а с т м а с с а . . |
0 , 5 |
0 |
3 |
||
2 . С т а л ь |
. . . . |
0 |
1 |
1 |
Предположим, что мы хотим определить потребность в сырьё, нужном для изготовления деталей, чтобы составить соответствующий заказ. Эти потребности могли бы быть определены подстановкой значений уи у 2 и у 3, определяемых уравнениями (1), в уравнения (3). Однако мат ричная запись выражений (3)
т1 |
'0,5 |
0 |
1 |
~У\ |
|
|
|
У2 |
(4) |
||||
т2 |
0 |
1 |
- |
|||
Уз |
|
|||||
|
|
|
|
позволяет выполнить эту подстановку также в матричной форме. Подстановка (2) в (4) дает
' тл |
_ |
'0,5 |
0 |
3' |
"4 |
6 |
8 " |
х2 |
(5) |
1 |
.0 |
1 |
1 |
2 |
2 |
3 |
|||
|
|
1 |
1 |
1 |
Х3 |
|
|||
|
|
|
|
|
|
Умножение матриц в правой части уравнения приводит к следующему результату.
т,1 |
5 |
6 |
7 |
*i |
|
|
х2 |
( 6) |
|||||
т2 |
3 |
3 |
4 |
|||
х3 |
У |
|||||
|
|
|
|
Трудоемкость такого преобразования меньше, чем трудоемкость пря мой алгебраической подстановки уравнений (1) в (3). Но эта разница в трудоемкости была бы еще больше, если бы число переменных бы ло больше, чем в данном примере. Основные усилия, связанные с пе реходом от выражения (5) к (6), реализуемом с помощью умножения матриц, сводятся к выполнению единственной арифметической опера ции,- которая в настоящее время легко выполняется на быстродей ствующей ЭВМ даже в тех случаях, когда имеется большое число переменных.
Только что приведенная иллюстрация является примером общего результата, согласно которому, если у — Ах и х = Bw, то у — ABw. Это справедливо для любых векторов х, у, w и любых матриц А и В.
51
2. ТРАНСПОНИРОВАНИЕ МАТРИЦ
Пример. Когда мы впервые ввели понятие матрицы (см. параграф 2 главы I), был приведен пример, в котором рассматривались средние цены автомобилей при четырех различных сроках службы. Данные об этих ценах, приведенные за три года, были представлены в виде матри цы размером 4x3:
"1881 2120 2445"
1512 1676 1825
1261 1397 1484
1054 1144 1218
где строки относятся к сроку службы, а столбцы — к годам. В той ме ре, в какой это связано с характеристикой цен на автомобили, такой выбор строк матрицы полностью произволен и мы могли бы сразу же поменять местами строки и столбцы без какой-либо потери информации, получив строки для отдельных лет и столбцы для сроков службы. В этом случае цены были бы расположены следующим образом:
1881 |
1512 |
1261 |
1054 |
В - 2120 |
1676 |
1397 |
1144 |
2445 |
1825 |
1484 |
1218 |
Хотя элементы этой матрицы те же, что и у первой, обе матрицы в соот ветствии с определением равенства матриц неодинаковы. В самом деле, у них даже разные размеры. Взаимосвязь между ними проявляется в том, что строки одной матрицы являются столбцами другой. В то время как первая матрица имеет размеры 4x3, размер второй матрицы 3x4. Когда матрицы связаны подобным образом, то говорят, что каж дая из них является транспонированной матрицей относительно дру гой. Например, В есть транспонированная матрица Л, а Л — транспо нированная матрица В.
В общем транспонированная матрица есть матрица, чьи столбцы являются строками А при сохранении их порядка (от первого к послед нему). Транспонирование записывается как А'. Строка Л' соответст вует столбцу А. Если А имеет размеры г X с, то размеры А' — с X г; если atj —элемент строки i и столбца j матрицы Л, то он может быть
элементом строки / и столбца i матрицы А ' . Отсюда, |
если |
||||
|
|
Л = {аи }, |
|
|
|
то транспонирование матрицы есть |
|
|
|
||
|
А ' |
= {аи }' = {ап }, |
|
|
|
и, если |
мы определяем а'ц как Л' = |
{а//}, |
то а'ц = |
aц для i — 1, 2, |
|
..., с и / |
= 1 , 2, ..., г. |
|
|
Матрица |
ЛгХс содержит |
Здесь возникает проблема обозначений. |
|||||
г строк |
и с столбцов. |
Однако эти |
индексы в сочетании1 с транс |
52
понированной матрицей А'гХс могут иметь двоякий смысл: остается неясным, имеет ли матрица А размеры гХ с или это размеры матрицы А '. В последнем случае предполагается, что у матрицы Л размеры сХг. Для ясности, в тех случаях, когда необходимо ввести подписные значки, обозначающие размеры транспонированной матрицы, следует выбрать одну из эквивалентных форм записи: (ЛГХс)' или (Л')сХг.
Теперь рассмотрим свойства и следствия операции транспонирова ния.
а) РЕФЛЕКСИВНАЯ ОПЕРАЦИЯ
Транспонирование является рефлексивным. Это значит, что тран спонирование транспонированной матрицы есть сама матрица, т. е. (Л')' = Л. Это может быть показано следующим образом:
(А'У = К Г = |
К Г |
Пример. Если |
to>— |
------1 1 1 Со |
|
|
, |
= К ) = К ) = А.
3 —4'
А' =
1 2
И ') '- |
' 3 |
1 ' |
= А. • |
|
—4 |
2 |
|||
|
|
б) ВЕКТОРЫ
Транспонирование вектора-строки дает вектор-столбец, и наобо рот. Например, транспонирование
дает х' = [ 1 6 4].
Это совместимо с уже введенным обозначением, согласно которому вектор-строка обозначается верхним штрихом. Этот значок указывает на то, что вектор-строка есть транспонированный вектор-столбец, содержащий те же элементы, и отличает его от этого вектора-столбца.
в) СУММЫ
Транспонированная сумма матриц равна сумме транспонированных матриц. Если
Л + В = С = {си } = {аи + Ьи },
тогда
(Л ~Ь В)' = С' = {с,/} = {cji} = {ciji 4~ Ьл} = {ciji} -j- {bji}
и, таким образом,
(Л + ву = А' + В'.
53
г) П Р О И З В Е Д Е Н И Е
Транспонирование произведения матриц равно произведению транс понированных матриц, взятых в обратном порядке1, т. е. (АВ)' = В 'А '.
Пример.
|
1 |
0— 1 |
1 |
1 |
1 |
||
Л£ = |
0 |
2 |
4 |
||||
2 — 1 |
3 |
||||||
|
3 |
0 |
7 |
||||
|
|
|
|
||||
В' А' 1 |
о |
со |
~ 1 |
2 |
~ |
||
2 |
0 |
|
0 — 1 = |
||||
1 |
4 |
7 |
|
— 1 |
3 |
|
-2 1 — 6
11 0 19
— 2 1 Г
1 0 (АВ)'.
— 6 19
Рассмотрение размеров и условий перемножения матриц подтверждает этот результат. Если А есть матрица г X s и В — матрица s X t, то размеры произведения Р = АВ составят г X t. Однако А ' имеет раз меры s х г, а В' — t X s, и единственное произведение, которое может быть получено на основе этих матриц, следующее:
Bfxs AsX.r — Q txr•
То, что матрица Q = В 'А ' является транспонированной матрицей Р = АВ, вытекает также из определения произведения матриц: ij-й элемент Q равен скалярному произведению i-й строки В' и /-го столбца А'\ кроме того, этот элемент равен скалярному произведению t'-ro столбца В и /-й строки А, а это, по определению операции умножения, есть ji-й член матрицы Р. Отсюда Q — Р' или В'А ' = (АВ)'.
Прямое обобщение результата, полученного для транспонирования произведения двух матриц, приводит к следующему:
(ABCD)' = D'C'B'A' и т. д.
д) СИММЕТРИЧЕСКИЕ МАТРИЦЫ
Пример. Когда две переменные лу и х 2 находятся в некотором соот ветствии друг сдругом, то говорят, что они коррелируют. Степень кор реляции между переменными измеряется с помощью коэффициента кор реляции. Коэффициенты корреляции имеют величину, находящуюся в пределах от —1,0 до 1,0. Отрицательные значения указывают на об ратную зависимость между переменными (если одна растет, то другая имеет тенденцию к уменьшению), а положительные значения указы вают на прямую зависимость (если одна растет, то вторая также имеет
■Доказательство: пусть |
|
ЗВ =С = (с;^.)= | 2 агй |
, |
тогда |
|
(АВ)' = С = {с;,} = {сл) = { | ajk Ц = { I a k}’ Ц = j | b[k а ' у.( = В ' А ' ,
54