Файл: Баренбойм, А. Б. Малорасходные фреоновые турбокомпрессоры.pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 17.10.2024
Просмотров: 207
Скачиваний: 1
Рис. 138. Схема зацепления
или
|
Au (1 |
і) = А л, |
ms£s |
(312) |
|
А л = |
|||
где zs — суммарное число |
зубьев |
шестерни и |
ведомого колеса |
|
или |
|
И -I- г., = А |
|
|
г1(1 + і) |
= Л, |
|
||
|
(313) |
|||
|
га = глcos ад„ |
r0 = г cos as, |
||
|
|
|||
где ад, — угол |
зацепления |
с рейкой в торцовой |
плоскости; |
|
as — угол |
зацепления |
двух сопряженных |
колес в торцовой |
плоскости.
D
\
Рис. 139. К определению параметров рейки в торцовой плоскости
Напомним, что при отсутствии коррекции и при высотной коррекции
г = Г-с. Л =*=^д-
Все зависимости, полученные ранее для прямозубых колес, действительны и для косозубых, если рассматривать зацепление
вторцовой плоскости и применять коррекцию в этой же плоскости.
•Из рис. 138 видно, что
*Д= |
COS рд. |
(314) |
Здесь tA шаг зубьев по нормали N 1N 1 к направлению зуба, явля ющимся шагом исходного контура, |3Д— угол наклона зуба по делительному цилиндру, диаметр которого равен сіл.
Учитывая (310), получим
тп — tfZjCos рд. • |
(315) |
152
Из формул (311), (312) следуёт
л _ |
mnzс |
(316) |
|
2 cos Ч. |
|
|
|
|
Формула (316) показывает, что мы можем для угла |
подобрать |
|
такое значение, при котором |
АЛ стало бы равным |
межосевому |
расстоянию А. Следовательно, для получения необходимого рас стояния между осями нет необходимости применять коррекцию. Поэтому в косозубых передачах корабельных установок приме няется лишь высотная коррекция, имеющая целью увеличить изгибную прочность зуба шестерни.
Основные размеры зубчатого колеса при этом будут (см. фор мулу 305 и 271)
ге1 = Си + тп + »ij^v
гег = Сй + т„ + msL,,
1.25тп + т £ и
1.25тп + msС2.
Высота зуба
h — 2,25тп.
Высота головки зуба
An = т я + т£и \ Аі2 = tnn -{- /Д4С2. J
Шаг зубьев по основной окружности будет
|
С |
t |
а s |
s COS ЯД5 |
ИЛИ |
|
Со |
г д |
COS а 1с |
|
— |
cos а.. |
||
L = |
/Н-«----- |
|||
COS |ІД |
Д1 |
" cos |
(317)
(318)
(319)
(320)
Толщина зуба по делительной окружности (в торцовой плоскости)
(321)
Толщина зуба по окружности радиуса гх (в торцовой плоскости)
Sx = |
2гх 2Г, — (inv axs - 1пѵам) |
(322) |
|
где |
cos axs |
|
|
|
(323) |
||
Угол наклона зуба |
к оси по |
основному цилиндру |
радиуса г0 |
будет (см. формулу 309) |
_ tg ?д |
|
|
|
tg \‘о |
(324) |
|
|
do |
|
|
|
|
|
153
ИЛи
|
|
tg ßo = |
t g Ꭰ|
А |
t g |
рд COS а дS' |
( 325) |
|
|
|
Йд |
||||||
Как следует |
из сказанного |
ранее, |
при отсутствии коррекции |
|||||
или при высотной коррекции |
нормаль к профилям сопряженных |
|||||||
зубьев в точке |
касания |
совпадает |
с нормалью к профилю соот |
|||||
ветствующей |
рейки. |
Это |
значит, что |
в торцовой плоскости |
угол |
|||
зацепления |
(см. |
рис. |
125) будет |
равен аДІ (профильному |
углу |
рейки в торцовой плоскости), а в нормальной плоскости (перпен дикулярной направлению косого зуба) этот угол будет равен яд —
профильному углу инструментальной рейки, т. е. 20°. |
|
|
из |
|||||||||||
Теперь |
соотношение |
между |
углами aÂS |
и |
яд |
найдется |
||||||||
(рис. 139), |
на котором показана торцевая плоскость ОВСЕ и линия |
|||||||||||||
зацепления |
ОС, образующая с основанием |
угол аД5, |
нормальная |
|||||||||||
плоскость |
ONDE и линия OD, образующая с основанием |
угол «д. |
||||||||||||
Из рис. видно, что |
|
|
|
|
|
|
|
|
|
|
|
|
||
Н = ON tg Яд, |
Н = OB tg яДі, |
OB — ON cos Эд. |
|
|
||||||||||
Следовательно, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tg «ы = |
cos и. |
|
|
|
|
|
|
(326) |
|||
|
§ 45. |
КОЭФФИЦИЕНТ ПЕРЕКРЫТИЯ |
|
|
|
|
|
|||||||
На рис. |
140 показано образование прямого зуба, а на рис. 141 —- |
|||||||||||||
косого. Прямой зуб |
образуется |
|
при |
качении |
плоскости |
ABCD, |
||||||||
|
|
|
|
|
|
называемой |
п л о с к о с т ь ю |
|||||||
|
|
|
|
|
|
з а ц е п л е н и я , |
по |
основ |
||||||
|
|
|
|
|
|
ному цилиндру, при этом на |
||||||||
|
|
|
|
|
|
правление зуба 1—1 парал |
||||||||
|
|
|
|
|
|
лельно |
оси |
колеса. |
|
|
||||
|
|
|
|
|
|
|
В косозубой передаче по |
|||||||
|
|
|
|
|
|
верхность зуба также обра |
||||||||
|
|
|
|
|
|
зуется |
качением |
плоскости |
||||||
|
|
|
|
|
D |
ABCD (см. рис. 141) |
по |
|||||||
|
|
|
|
|
основному |
цилиндру |
радиу |
|||||||
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
са г0, |
но в этом |
случае |
зуб |
|||||
|
|
|
|
|
|
наклонен к оси колеса. |
||||||||
|
|
|
|
|
|
Пересечение |
плоскости |
за |
||||||
|
|
|
|
|
|
цепления |
в |
с |
поверхностью |
|||||
|
|
|
|
|
|
зубьев |
|
обоих |
случаях |
|||||
|
|
|
|
|
|
происходит по прямой ли |
||||||||
|
|
|
|
|
|
нии 1—1. В косозубом ко |
||||||||
Рис. 140. Образование |
поверхности |
пря |
лесе эта линия, относящаяся |
|||||||||||
|
мого зуба |
|
|
|
к |
основному |
цилиндру, |
об |
||||||
|
|
|
|
|
|
разует с осью колеса угол ßo. |
||||||||
Линия пересечения плоскости зацепления с поверхностью зуба |
||||||||||||||
носит название к о н т а к т н о й |
л и н и и . |
Таким |
образом, |
в косо- |
154
а) |
ff) |
ü r»3te
155
Зубом колесе эвольвентная линия образуется в торцовой плоскости и сопряженные зубья касаются по контактной прямой, образующей с осью колеса угол ß0.
На рис. 142, а и б показаны плоскости зацепления прямозубой
и косозубой передачи. |
Линии АС являются |
линиями зацепления |
||
в торцовой плоскости |
для переднего торца |
основного |
цилиндра |
|
(рис. 143), |
а BD — то же для заднего торца. |
|
|
|
Начало |
и конец зацепления (точки Аі и Л2, см. рис. |
142) в тор |
цовой плоскости находятся обычным способом, т. е. пересечением окружности выступов с линией зацепления (см. рис. 143).
Рис. 143. К определению коэффициента перекрытия
Для прямозубой передачи картина зацепления в обоих торцах совершенно одинакова и зубья обоих колес одновременно входят в зацепление (Л, — Л') и выходят из зацепления (Л2 — Л2). Вто
рая пара зубьев находится на расстоянии t0 от первой. В косозу
бой передаче картина несколько иная. В |
одном торце (линия за |
|||
цепления АС) зубья вошли в зацепление |
в точке А х (рис. 142,6), |
|||
в |
другом |
торце (линия |
зацепления BD) |
в точке Е зубья еще |
не |
вошли |
в зацепление. |
Одна пара зубьев полностью войдет |
в зацепление тогда, когда точка Е совпадет с А\. Для контактной
линии, |
изображенной на (рис. 142) линией N XN S>только на одном |
|
участке |
длиною N XN 2 зубья находятся в зацеплении, а на другом |
|
участке |
N tN-, зубья еще |
не вошли в зацепление. |
В точке Л2 на одном |
торце рассматриваемая пара зубьев на |
чинает выходить из зацепления, однако на втором торце они еще будут находиться в зацеплении до того момента, когда точка D совпадет с точкой Л). В этот момент рассматриваемая пара зубьев
полностью выйдет из зацепления. Таким образом, продолжитель ность зацепления одной пары сопряженных зубьев определится
не отрезком |
Л ,—Л2, как это имеет место в прямозубой передаче, |
а отрезком |
Л, — М. |
156
Под продолжительностью зацепления понимается промежуток времени, за который основной цилиндр повернется на дугу А\—М. Следовательно, коэффициент перекрытия будет в данном случае равен
|
|
£ ==2 |
---І--- |
’ |
|||
HO |
|
|
|
t° |
|
||
|
А ХМ = Д,Л2-|-Л 2Л4, |
||||||
тогда |
|||||||
|
AjA2 |
AM |
|||||
|
|
|
|||||
|
А\А |
е — |
С |
+ |
|
С |
|
но |
есть коэффициент |
перекрытия в торцовой плоскости, |
|||||
|
Гп |
|
|
|
|
|
иначе говоря коэффициент перекрытия прямозубой передачи,
следовательно, |
|
|
е = е, + ея, |
|
|
(327) |
||||||||
|
|
|
|
|
|
|
|
|
|
|||||
где гп — |
*0 |
— есть |
дополнительный |
|
коэффициент |
перекрытия, |
||||||||
вызванный тем, что |
контактные |
линии расположены |
под углом |
|||||||||||
к оси |
колеса. |
|
следует |
|
|
|
|
|
|
|
||||
Из |
(рис. |
142, б) |
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
А 2М = В tgß0 |
|
|
||||||
или, |
пользуясь формулами |
|
(325) |
и (320), |
получим |
|
||||||||
|
|
|
|
|
|
— |
В |
Э д C 0 S |
aAS |
C 0 S ß j |
|
|
||
|
|
|
|
|
|
п ~ |
|
тптгCOS ам |
|
|
|
|||
Обозначим |
~ |
= ф или В = |
|
, тогда |
|
|
||||||||
|
|
|
|
Мді |
|
|
C0S ГД |
|
|
|
|
|
||
|
|
|
|
|
|
|
|
4zj tg Э,1 |
|
|
(328) |
|||
|
|
|
|
|
|
|
еп |
- |
|
|
|
|
||
Величина е„ |
может |
быть значительно больше е5. Так, например, |
||||||||||||
для |
шевронных передач, |
применяемых в корабельных установ |
||||||||||||
ках, угол рд берется в пределах 30°—45°, |
коэффициент ф* прини |
|||||||||||||
мается |
в пределах |
1 — 1,5, |
а число зубьев шестерни г, = 30--40. |
|||||||||||
Для |
наименьших значений этих |
величин, |
получим |
|
||||||||||
|
|
|
|
|
|
гп - |
|
1-30tg 30° |
|
ö’b |
|
|
||
|
|
|
|
|
|
|
; |
|
= |
|
|
|||
(отметим, |
что |
предельное |
значение |
|
= 1,7.) |
|
То, что в косозубых и шевронных передачах коэффициент пере крытия значительно больше, чем в прямозубых, является основным преимуществом первых.
С увеличением коэффициента перекрытия передача работает плавнее, уменьшается динамическая нагрузка на зубья и шум при работе передачи (что имеет существенное значение для корабель ных установок) и увеличивается прочность зубьев.
157