Файл: Сахарников Н.А. Высшая математика учебник.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 09.04.2024

Просмотров: 164

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

пеням X — х 0 функции

а0 (х), ал

(х), аг (х), / (Х). Для простоты

записи ниже положим х п = 0. В атом случае получим

 

 

СО

с о

 

a ü ( х ) :-

X ч

аг (х) = ^

 

 

п----о

0

(18)

 

С О

с о

а2(х)-=

 

X с1 п % п ,

о

 

 

о

 

Подставив эти разложения и ряд (17) в уравнение (16), получим тождество

_V апхп 2

п(п — 1) Ъпхп

+

о

О.

 

 

 

 

 

 

 

 

с о

\

с о

с о

 

 

+

X Ч п Х П

 

__ V

 

 

X Ь п * П — —

 

 

 

о

/ о

 

о

Путем

сравнения

коэффициентов

при одинаковых степенях х

в обеих

частях равенства придем к системе уравнений относи­

тельно искомых коэффициентов Ък

х°:

а02 • 1 • Ъ2-f- р0Ьг+ q0b0-f q0b0 = с0,

х:

a(ß - 2 - b 3 + ai2-i-b .i

'rp02b2-yplb1^r q0b1Jr q1b0 = cl, (19)

xs :

а0 (s ; 2) (s 1) fes „ 2

cp (b0, bu . . ., bs;i) = 0.

Каждое последующее уравнение системы (19) содержит одним искомым коэффициентом больше предыдущего. Коэффициенты Ь0 и Ъх остаются произвольными и играют роль произвольных по­ стоянных. Первое из уравнений (19) дает Ь2, второе дает Ь3 и т. д.,

и вообще

из

s+ 1 -го уравнения

можно

определить

bs +2,

зная

предыдущие

Ь0,

Ъг, . .

bs +1.

 

 

 

 

не­

Заметим,

что

подобным

 

образом можно интегрироватр

линейные уравнения.

 

 

 

 

 

 

 

 

Л р и м о р

1.

Найти

решение уравнения Эйри у" ху

■0, удовлет-

в оряюіцее

условию

у0 ----- 1,

уд

=

0 при х0 -- 0.

Подставим

рфц

(17)

(при

х0 -- 0) в данное уравнение, получим равенство

 

 

 

2Ь2 + 3-2* &3ж+ 4 -3 -Ь 4ж2 +

. . . — х(Ь0-{-Ь1Х-\-Ъ2х*+ . .

.) =

0,

 

пз которого путем

сравнения

коэффициентов

при одинаковых

степенях

X следуют

соотношения

 

 

 

 

 

 

 

 

2Ь2 = 0, 3 ■2&3 — ^о = 0>

(п

2) -(- 1 ) Ьп+2bn_^=z 0, . . .

 

Положив bg =

1 и

= 0,

найдем

 

 

 

 

 

 

^3fe-2 = ^3fc-i =

0, bzk =

j 1 • 4 • 7 • • .(ЗА- —2).

 

 

 


СО

1 - 4- 7 . . . (ЗА:—2)

г / И = і +

2

X .

(ЗА) !

 

Й=1

 

И р и м е р 2. Найти

решение

уравнения Бесселя

х 2 у " х у ' + (х2 —р2) г/=0 (р = const).

Решение этого уравнения будем искать в виде так называемого обобщен­ ного степенного ряда, т. е. в виде произведения некоторой степени х на сте­ пенной ряд:

СО

 

 

У = х ° ^

a kx k ,

(21)

fc=o

 

 

где а0=+ 0. Найдем производные

с о о о

г/' = 2

(p + k) ak ^ k~1, у” = ^ 1 (p + k)(p + k~ l ) a kx?]h- ”

А = 0

h = o

и подставим в уравнение (20) вместо у, у' и у" соответствующие ряды. Получют тождество

с о о о

 

2

Кр+

А') (Р + А — l) + (p-fA)] akxf rk+ ( x ï р2) 2

akx‘+k= 0 .

 

 

h = 0

 

 

 

 

 

 

 

 

 

k = o

 

 

 

 

 

Приравняем нулю коэффициенты при х в степени р, р + 1, р + 2 и т. д.;

получим

систему уравнений

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(р2—р2)а 0 = 0, [(р + 1)2 —Р2]аі-= 0,

 

 

 

 

 

[(Р +

2)2 —р2] й2 +

ао =

0,

• .

[(р + А)2 —р2] а* + й*-2 = 0, . . .

(22)

Из

первого

уравнения этой

системы следует, что

р2 — р2 =

0, т. е. р — р

и р -= —р.

р =

р и р >

0- Из системы (22)

последовательно

определяются

alt

Пусть

аг, а3,

. . .;

а0 остается

произвольным.

Таким образом,

получим

 

 

 

 

 

«1 = 0, а3= 0 и вообще «2ѵ_х = 0,

 

 

 

 

 

 

 

(?2

______ ао

 

_________ Ч_________

 

 

 

 

 

 

2 (2р + 2)

4

2 - 4 ( 2 р + 2) (2р + 4)

 

 

 

 

 

_____ (— 1У«о___________________ (—1)ѵйо_______

 

 

a 2v

2-4

. . 2ѵ (2р + 2) . ■. (2р +

2ѵ)

 

22ѵ • у ! (р + 1)

. . . (p + v)

 

 

 

 

 

 

Положим

an =

 

 

где Г (p +

1)

есть гамма-функция,

рас-

смотренная

в

0

Г (р+ 1)

установлено, что Г (ѵ +

1)

■ѵ! п Г (р +

п. 164.

Там

же

+

1) =

рГ (р).

Следовательно,

(р +

1) (р +

2). - . ( P

 

+

ѵ) Г (р +

1) =

=

Г (ѵ + 1

+ р).

выборе

постоянной

а0

система

(22) имеет

решение

 

 

При

таком

 

 

 

 

 

 

Ѵ-1—0, й2

________Ь ІІ!________

 

 

(23)

 

 

 

 

 

 

 

22ѵ+рГ (ѵ + 1) Г (ѵ + 1+ р )

 

 

 

где V =

1,

2,

3,

. . . . Подставим найденные

значения коэффициентов

в ряд

(21), получим решение уравнения (20). Это решение называется функцией. Бесселя первого рода порядка р и обозначается символом J p(x):

( - 1У

2ѵ+р

Г (ѵ+ 1) Г (ѵ + 1+ р )

 


Ряд (24) сходится при всех значениях х, что легко обнаружить на осно­

вании признака Даламбера.

1 + р) =

(ѵ + ге)! п равенство (24) дает функ­

При р — п имеем Г (ѵ +

цию Бесселя первого рода

порядка

п

 

оо

 

 

 

(25)

Если р=/= п, то, положив в (22) р = —р, так же как и выше, получим еще одно решение уравнения (20), а именно J_p (х). Оно определяется фор­ мулой (24), в которой надо заменить р на —р. Можно доказать, что функции Jp (X) и J-p (х) линейно-независимы, если р=^= п. В этом случае общее решение уравнения (20) имеет вид

y = c xJp (х) + с2/^р (ж).

Если р = п, то в системе (22) обратится в нуль коэффициент при а2п. Можно доказать, что в этом случае решением уравнения Бесселя, линейно­ независящим от решения (25), является функция Бесселя второго рода по­ рядка п, определяемая равенством

Y n(x) = l i

JP (x)cos ря—J-p{x)

m

w üub P31 —J -p\x>р

n

p-+n

 

sin pn

В этом случае общее решение уравнения Бесселя имеет вид

у(х) = сг/ п(х) + с2У„(х).


Глава ХГѴ

ТЕОРИЯ ВЕРОЯТНОСТЕЙ

П р е д м е т и з а д а ч и т е о р и и в е р о я т н о с т е й . В основе теории вероятностей лежат объективные закономерности, присущие массовым случайным явлениям. Массовым называется явление, которое многократно повторяется или которое можно воспроизвести сколько угодно раз при сохранении неизменным основного комплекса условий. При этом, несмотря на постоянство основного комплекса условий, с возможной тщательностью вос­ производимых, результаты отдельных опытов всегда более или менее отличаются друг от друга; эти результаты испытывают слу­ чайное рассеивание. Однако практика показывает, что, наблюдая множество однородных явлений, в них обнаруживается опре­ деленная закономерность.

Классическим примером массового случайного явления может служить измерение, например, длины стержня, его веса или

какого-либо параметра промышленного изделия при

условии,

что технологический процесс изготовления изделия

налажен,

качество исходных материалов в основном не меняется и измере­ ния производятся одним прибором с одинаковой тщательностью. Измерения обнаруживают характерную картину случайного рас­ сеивания результатов. Разброс результатов измерений подчи­ няется определенной закономерности. Эта закономерность хорошо описывается кривой Гаусса,* или так называемой нормальной кривой распределения (рис. 153). Площадь под всей кривой равна единице, площадь под дугой ВС равна вероятности попадания случайного результата измерения в промежуток (6, с). Основная масса результатов будет группироваться около некоторого сред­ него значения а. На участке — сг, а + о), где а — определенное

* Карл Фридрих Гаусс (1777—1855) — немецкий математик.

для данных условий измерения положительное число, называ­ емое средним квадратичным отклонением, содержится в среднем

доля измерений, равная 68,27% от

всей массы

произведенных

повторных измерений. В промежутке — 2а,

а -р 2а) содер­

жится

95,45%

результатов

всех

измерений,

в промежутке

— За,

а + За) — 99,73%, так что

за «трехеигмовые» пределы

выходит

лишь 0,27% всех измерений (см. и. 243).

 

В других условиях проведения повторных испытаний встре­

тятся

другие

закономерности

распределения вероятностей, но

и они

носят

о б ъ е к т и в н ы й

характер.

Математические

законы теории вероятностей есть отражение реальных статисти­ ческих законов, объективно существующих в массовых случайных

явлениях.

Теория вероятностей есть математическая наука, изучающая закономерности массовых случайных явлений (независимо от конкретной природы этих явле­ ний). Создателями теории вероят­ ностей являются Блез Паскаль (1623—1662), Пьер Ферма (1601 — 1665), Христиан Гюйгенс (1629— 1695). Фундаментальные резуль­ таты в теории вероятностей полу­ чены Я. Бернулли (1654—1705).

Жозефом Луи Лапласом (1749— 1827), П. Л. Чебышевым (1821 —1884), А. М. «Ляпуновым (1857— 1918), А. А. Марковым * (1856—1922) и другими учеными.

О с н о в н а я з а д а ч а т е о р и и в е р о я т н о с т е й . Теория вероятностей рассматривает методы вычисления вероят­ ностей сложных событий по известным вероятностям некоторых простейших событий (полученных из опыта или с помощью теоре­ тической схемы). Тем самым открывается путь для анализа и вы­ явления закономерностей вероятностей сложных случайных явлений.

Значение теории вероятностей состоит в том, что эта наука позволяет; 1) предвидеть вероятности (частоты) сложных событий при массовом повторении испытаний, т. е. осуществлять научный прогноз явлений, 2) количественно оценить влияние отдельных случайных факторов на исход испытания; тем самым появляется возможность оказать влияние на этот исход.

Методы теории вероятностей широко используются в термо­ динамике, статистической физике, теории автоматического регу­ лирования, биологии и многих других науках.

Теория вероятностей не ставит задачу предвидения исхода отдельного случайного явления. Она позволяет предусмотреть средний исход массы аналогичных явлений, причем конкретный исход каждого отдельного явления остается неопределенным.


случайным. Например, молекулярная теория вещества может быть только статистической теорией. Мы не в состоянии просле­ дить за движением каждой отдельной частицы и не потому что их много (в 1 см3 воздуха содержится 2,69-ІО19 молекул), а потому что начальные данные движения отдельной частицы не могут быть определены бесконечно точно и действуют случайные силы, кото­ рые нельзя учесть абсолютно точно.

§40. СЛУЧАЙНЫЕ СОБЫТИЯ

235.Основные понятия теории вероятностей. Условимся назы­ вать испытанием, или опытом, осуществление на практике какогонибудь комплекса условий. Результат испытания будем называть

исходом испытания, или событием. Например, при стрельбе по мишени пуля может попасть в цель или не попасть. Событие в этом примере — попадание пули в цель, другое событие — промах. Опыт — стрельба по мишени.

Различают события достоверные, невозможные и случайные. Достоверным называется событие, которое обязательно про­ изойдет в результате испытания. Например: 1) подброшенная в комнате монета упадет; 2) при температуре 20° С и нормальном

давлении вода находится в жидком состоянии.

Событие называется невозможным, если оно заведомо не про­ изойдет в результате испытания.

Событие называется случайным, если оно может произойти, но может и не произойти в результате осуществления данного комплекса условий. Например, брошенная вверх монета может упасть гербом вверх (событие А) либо гербом вниз (событие В). Случайными являются также такие события: распад данного атомного ядра, излучение фотона атомом, столкновение данных молекул, вспышка данной звезды и т. д.

Каждое случайное событие есть результат действия бесконеч­ ного множества причин.

Случайное событие может заключаться в том, что какой-либо параметр будет иметь (в результате опыта) определенное числовое значение или значение из данного промежутка. Такие величины, значение которых в результате испытания могут принимать те или другие числовые значения, называются случайными величи­ нами. Например: 1) скорость данной молекулы газа в данный момент может принять любое числовое значение из некоторого промежутка 0 sç ѵ ^ ктах; это пример так называемой непрерыв­ ной случайной величины-, 2) момент количества движения электрона в атоме принимает строго определенные числовые значения; это пример так называемой дискретной случайной величины.

Некоторые величины, будучи случайными, могут иметь как непрерывный, так и дискретный спектр значений в зависимости от основного комплекса условий; Например, энергия электрона