ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 03.05.2024
Просмотров: 276
Скачиваний: 0
СОДЕРЖАНИЕ
Смена методологических парадигм
Предисловие к четвертому изданию
Предисловие к русскому изданию
Часть первая Теория естественных наук
Глава 2. Пример из истории: основания и значение принципа причинности в квантовой механике
Глава 3. Систематический анализ проблемы оснований естественных наук
Глава 4. Развитие исторической теории обоснования науки П.Дюгемом
Глава 5. Критика аисторизма теорий науки Поппера и Карнапа на примере"Astronomia Nova" Кеплера
Глава 6. Следующий пример: культурно-исторические основания квантовой механики
Глава 8. Основания всеобщей исторической теории эмпирических наук
Глава 9. Переход от Декарта к Гюйгенсу в свете исторической теории науки
Глава 13. Теоретические основы исторических наук
Часть третья Мир научно-технический и мир мифологический
Глава 14. Научно-технический мир
Глава 15. Значение греческого мифа для научно-технической эпохи
Из (1) следует:
(2)
может быть вычислено, если известно t (хотя методы, которыми располагал Кеплер, могли давать только грубое приближение).
Итак, расстояние между планетой и Солнцем определяется уравнением
(3) ,
получаемым, в соответствии с рис. 2 по закону косинусов. Наконец, из этого следует уравнение
(4) ,
из которого по простому отношению косинусов выводится значение v, и, следовательно, положение планеты в момент времени t.
В этих рассуждениях используются: 1) закон радиуса, с помощью которого устанавливается отношение между временем и радиусом; 2) модификация теоремы Архимеда, посредством которой от вывода площади сектора круга, описываемого радиус-вектором, переходят к вычислению площади QSP, то есть чего-то совершенно отличного от сектора круга. Таким образом, отношение между временем и радиус-вектором преобразуется в отношение между временем и площадью круга. Едва ли можно говорить об эмпирических основаниях закона радиуса, а указанный переход от теоремы Архимеда к ее модификации не был обоснован математически. И то, и другое было хорошо известно Кеплеру. К этому надо добавить, что в уравнениях 1 - 4 фигурирует эксцентриситет e, что стало возможным только благодаря hypothesis vicaria, которые Кеплер вначале отвергал.
Таким образом, и на этой стадии исследований Кеплер вновь показал, что его не слишком заботила точность и достаточность эмпирического, математического или теоретического обоснования, хотя, как это видно из отрывка, приведенного в начале этой главы, их возможность им предполагалась. Поэтому нет ничего удивительного в том, что, исходя из минимума эмпирических данных, он в конечном счете отказался и от остававшейся части аксиомы Платона - от допущения о круговой форме планетарных орбит - как ранее он отказался от другой ее части, от допущения о постоянстве угловой скорости планет.
На этот шаг он решился в ходе новой попытки определить орбиту Марса. Вначале Кеплер применил уже описанный метод, использованный при вычислении орбиты Земли. Так же как тогда он сравнивал различные положения Земли по отношению к константному положению Марса, так и теперь три различных положения Марса соотносятся им с одним и тем же положением Земли. Тем самым были определены три расстояния Марса от Солнца и три угла, образуемых соответствующими радиус-векторами. С помощью утомительных, хотя и простых, тригонометрических вычислений он определил линию апсид и значение эксцентриситета Солнца для трех различных случаев. Все результаты были различны. Из этого мог быть сделан только один вывод: орбита Марса не может быть круговой.
Этот революционный для астрономии вывод был сделан на основе тех же смелых допущений, как и при вычислении орбиты Земли. Почва, на которой теперь стоял Кеплер, была не менее зыбкой, чем раньше: теория Тихо, hypothesis vicaria и вера в правильность данных Тихо.
И на заключительной стадии исследования, когда он пришел к заключению, что орбиты планет должны иметь форму эллипса, спекулятивный дух ему не изменил. Обратимся к рис. 3.
Прежде всего, следуя принципу простоты, Кеплер постулировал отклонение орбиты Марса от круговой формы по формуле b = 1-e2, где 1 - радиус, e - эксцентриситет Солнца, b - ось действительной орбиты. Позднее он представил b = 1 - (e2/2).
Но однажды он сделал открытие, суть которого мы сможем понять, взглянув на рис. 4, представляющий орбиту Марса. Он заметил, что
(5) .
Здесь - наибольший угол, образованный схождением сегмента P1S (планета-Солнца) и P1C (планета-центральная точка окружности). Если затем просто подставить предполагаемое значение b в вычисления, то получится
а поскольку e << 1, то
,
но 1 + (e2/2) равно 1.00429, что согласуется с вычисленным результатом (5).
"Когда я увидел это, - писал Кеплер, - я словно бы очнулся ото сна и увидел свет"[49].
Полученное отношение, хотя оно было лишь приблизительным и верным только благодаря малости e, немедленно вдохновило его на новые спекуляции, представленные рис. 5.
Он предположил, что (см. рис. 5) отношение, аналогичное уравнению (5) должно выглядеть следующим образом:
.
Иначе говоря, отношение расстояния между Солнцем и планетой на "истинной" орбите к расстоянию между Солнцем и планетой на "воображаемой" орбите аналогично отношению r/b на рис. 3.
При r = 1 получаем:
SP cos = PM
PM = 1 + e cos .
Из этого следует, что планетарные орбиты выражаются формулой
(6)
После изнурительных трудов - "paene usque ad insanium" - Кеплер установил, что уравнение (6) выражает формулу эллипса, хотя и приблизительно (надо напомнить, что математический аппарат, доступный Кеплеру, был еще достаточно примитивен).
Итак, и на этой стадии, как мы видим, Кеплер вновь прибегает к использованию предположений, спекуляций и грубых приближений; более того, проверка уравнения (6) предполагает сравнение значений SPe с теми значениями, которые были получены методами определения расстояния, применяемыми Кеплером; критические замечания об этих методах были сделаны выше.
В заключение рассмотрим еще один шаг Кеплера (см. рис. 6).
В соответствии с формулой (1) здесь также должно выполняться соотношение
(7) .
Другими словами, время t, необходимое, чтобы планета прошла по эллиптической дуге QPc, относится ко времени T, затрачиваемому на прохождение всей орбиты, так, как площадь SQPc относится к общей площади эллипса, где b - радиус малой оси, а большая ось принята за 1. Здесь Кеплер делает предположение, аналогичное тому, какое уже было сделано ранее (см. рис. 4 и 5):
(8) .
Согласно (1)
.
Если подставить это значение в (8) и (7), то в результате простых вычислений получим:
.
Решающий шаг в этом выводе - принятие за исходный пункт уравнения (7) - есть не что иное, как новое и не менее проблематичное применение теоремы Архимеда; теперь она применяется к сектору эллипса, вершиной которого является один из его фокусов, в котором помещается Солнце.
Теперь можно сформулировать два первых закона Кеплера [ср. уравнение (6)]:
(9)
(10)
Уравнение (10) говорит о том, что планета движется по эллипсу, в одном из фокусов которого находится Солнце. Уравнение (9) говорит, что в равные промежутки времени радиус "Солнце-планета" пробегает равные площади.
По отношению к Марсу, который является центральной проблемой и исходным пунктом всех рассуждений, это означает, что и e в уравнении (9) могут быть определены только благодаря ранее отброшенным (даже в усовершенствованном виде) hypothesis vicaria. Поэтому они использовались как при вычислениях SPс, так и в методе оценки и проверки полученного результата (включая определение трех положений Марса по отношению к одной и той же позиции Земли).
Вот как в действительности обстояли дела с обоснованием двух первых законов Кеплера, обоснованием, которое еще и сегодня часто представляют чем-то таким, что возникло исключительно на базе опыта.
Кстати сказать, теория Птолемея в сравнении с теорией Кеплера вовсе не проигрывает, ибо, во-первых, из-за малости орбитальных эксцентриситетов планет система Птолемея описывает движения планет почти с той же точностью, как теория Кеплера (что же касается Меркурия, то он является для обеих теорий своего рода enfant terrible); во-вторых, аксиома Платона имела ясное философское обоснование, тогда как для Кеплера эллиптическая форма планетарных орбит, естественно, оставалась загадкой. Его попытка обосновать эту форму спецификой движений планет не привела к успеху. В-третьих, то же можно сказать о его усилиях опровергнуть аристотелианскую аргументацию против идеи вращения Земли. Все это было типичными гипотезами ad hoc
[50]. Неудивительно, что его "Новая астрономия" была встречена современниками без всякого энтузиазма.
Анализ методов и доказательств, фигурирующих в "Новой астрономии", позволяет нам сказать со всей определенностью: если бы Кеплер следовал доктринам, принятым в теории науки нашего времени, он должен был бы отбросить оба своих закона, значимость которых вряд ли кто-либо сегодня осмелится отрицать. Покажем это на двух примерах: методологии науки Поппера-Лакатоса и индуктивной логики Карнапа.
5.2. "Новая астрономия" Кеплера в свете философии
науки Поппера и Лакатоса
Основной методологический постулат Поппера гласит, что научная теория должна быть фальсифицируемой. Если же фальсификация уже произошла, нам не следует предотвращать крах теории с помощью гипотез ad hoc или других допущений. Поппер пишет: "Если такое решение положительно, то есть если сингулярные следствия оказываются приемлемыми, или верифицированными, то теория может считаться в настоящее время выдержавшей проверку, и у нас нет оснований отказываться от нее. Но если вынесенное решение отрицательное или, иначе говоря, если следствия оказались фальсифицированными, то их фальсификация фальсифицирует и саму теорию, из которой они были логически выведены"[51].
О каком "решении" здесь идет речь? Этот термин означает, что так называемые базисные предложения (под которыми Поппер понимает сингулярные экзистенциальные предложения типа: то-то и то-то существует в такой-то и такой-то пространственно-временной области)[52] противоречат или не противоречат данной теории. Но если теории противоречат только отдельные сингулярные базисные предложения, у нас еще нет основания считать теорию фальсифицированной. "Мы будем считать ее фальсифицированной только в том случае, если нам удалось открыть воспроизводимый эффект, опровергающий теорию. Другими словами, мы признаем фальсификацию только тогда, когда выдвинута и подкреплена эмпирическая гипотеза низкого уровня универсальности, описывающая такой эффект. Подобные гипотезы можно назвать фальсифицирующими гипотезами"[53]. В качестве примера Поппер приводит высказывание "В нью-йоркском зоопарке живет семейство белых воронов"[54]; оно фальсифицирует универсальное высказывание "Все вороны черные". Но, добавляет он, "в большинстве случаев до фальсификации некоторой гипотезы мы имеем в запасе другую гипотезу, поэтому фальсифицирующий эксперимент обычно является
решающим экспериментом, который помогает нам выбрать одну из двух гипотез"[55].
Итак, фальсифицирующий эффект выводится из другой гипотезы, уже имеющейся в запасе. Конечно, поскольку такого рода решения опираются на базисные предложения, они принципиально могут быть пересмотрены (опять-таки с помощью базисных предложений); но практически мы обычно в какой-то момент прекращаем поиск опровержений и пытаемся закрепиться на избранной позиции. Поэтому Поппер вводит следующее правило: "Мы раз и навсегда отказываемся от того, чтобы приписывать какую-либо подтверждающую силу теории, фальсифицированной в ходе интерсубъективно проверяемого эксперимента"[56].
Однако Кеплер поступал как раз наоборот, когда он использовал результаты ранее фальсифицированных теорий для построения других теорий и затем оценивал последние с помощью первых. Кроме того, он находился в явном противоречии с попперовской методологией еще и в другом отношении. В то время отсутствие каких-либо явлений, указывающих на вращение Земли, рассматривалось как фальсификация всякой формы гелиоцентризма. Чтобы обойти эту фальсификацию, Кеплер пытался делать то, что решительно запрещает Поппер[57], а именно: спасти свою теорию с помощью гипотез ad hoc - и кроме того, с помощью гипотез, не менее проблематичных, чем его астродинамика. Следуй он предписаниям Поппера, ему пришлось бы отказаться от своей теории "раз и навсегда".
Сам Поппер полагает, что успех Кеплера оказался возможным отчасти потому, что "гипотеза окружности, от которой он отталкивался в своем исследовании, была относительно легко фальсифицируемой"[58]. Он прав в той мере, в какой выражение "относительно легко" связано с тем, что гипотеза окружности являлась "трехмерной" ("поскольку для ее фальсификации необходимы по крайней мере четыре принадлежащих данной области сингулярных высказывания, соответствующих четырем точкам ее графического представления"[59]), тогда как эллиптическая гипотеза являлась "пятимерной" ("поскольку для ее фальсификации необходимы по крайней мере шесть сингулярных высказываний, соответствующих шести точкам на графике"[60]). Однако рассуждения способны скорее лишь завуалировать тот факт, что фальсификация гипотезы о круговой орбите была в высшей степени проблематичной, ибо основана она была на весьма сомнительных посылках.