ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 03.05.2024
Просмотров: 245
Скачиваний: 0
СОДЕРЖАНИЕ
Смена методологических парадигм
Предисловие к четвертому изданию
Предисловие к русскому изданию
Часть первая Теория естественных наук
Глава 2. Пример из истории: основания и значение принципа причинности в квантовой механике
Глава 3. Систематический анализ проблемы оснований естественных наук
Глава 4. Развитие исторической теории обоснования науки П.Дюгемом
Глава 5. Критика аисторизма теорий науки Поппера и Карнапа на примере"Astronomia Nova" Кеплера
Глава 6. Следующий пример: культурно-исторические основания квантовой механики
Глава 8. Основания всеобщей исторической теории эмпирических наук
Глава 9. Переход от Декарта к Гюйгенсу в свете исторической теории науки
Глава 13. Теоретические основы исторических наук
Часть третья Мир научно-технический и мир мифологический
Глава 14. Научно-технический мир
Глава 15. Значение греческого мифа для научно-технической эпохи
Глава 5. Критика аисторизма теорий науки Поппера и
Карнапа на примере
"Astronomia Nova" Кеплера
Теоретические концепции Кеплера, представленные им в его "Новой астрономии", если рассматривать их под интересующим нас углом зрения, возникли в результате попыток определить орбиту Марса. После многолетних напряженных трудов Кеплер, наконец, признал, что его прежние подходы к этой проблеме были обречены на неудачу. Этот вывод был сделан после того, как выяснилось, что между значениями, вычисленными в соответствии с его гипотезами, и значениями, полученными в наблюдениях Тихо Браге, имелось расхождения в 8'. Кеплер писал:"Нам же, благодаря милосердию Божию, дан в лице Тихо Браге такой добросовестный наблюдатель, что в его наблюдениях ошибка в 8', характерная для птолемеева вычисления, попадается лишь для того, чтобы мы с благодарностью оценили эту милость и воспользовались ею. Наконец, это затруднение дает нам возможность найти истинный вид небесных движений..., установив причины, по каким сделанные предложения были некорректны... Таким образом, эти 8' указали путь к обновлению всей астрономии, они явились материалом для большей части данной работы"[42].
Такое утверждение никого не удивило бы в наши дни, разве что своей страстностью. Говорят, что с него берет начало все современное естествознание, ибо решающую роль Кеплер отводил данным наблюдения. В принципе это верно, однако, не следует при этом забывать, что беззаботность, с какой прежде обращались с данными наблюдения, то равнодушие, с каким воспринималось даже большее расхождение с ними, чем те 8', из-за которых Кеплер решился отвергнуть гипотезы о характере марсианской орбиты - почему он и называл их hypothesis vicaria, то есть временными или рабочими гипотезами - никак не могут быть отнесены на счет низкого уровня науки или личной несостоятельности ученых. В действительности, подобное отношение было тесно связано с теоретическими воззрениями, господствовавшими со времен Птолемея. Лежащая в основе этих воззрений формула, так называемая аксиома Платона, гласившая, что небесные тела движутся по кругам с постоянной угловой скоростью, отталкивалась от метафизики, согласно которой земной и небесный порядок вещей принципиально различны как несовершенное и совершенное, как низшее и высшее. Эта идущая от античности теория была отчетливо ориентирована на "спасение явлений" (; поэтому метафизика служила ей средством, при помощи которого вносился порядок в хаос явлений. Когда же это не вполне удавалось, под рукой всегда было объяснение. Разве можно слепо доверять чувствам?! И в особенности недопустимо это по отношению к объектам, столь возвышенным и удаленным, как небесные тела. Ощущения могли быть более или менее достоверными, когда они доставлялись вещами подлунного мира, но на их основании нельзя было с уверенностью судить о движениях небесных тел.
Мы были бы слишком наивны, если бы усмотрели в решительном отказе Кеплера от этого, идущего с древних времен, отношения к данным наблюдения свидетельство победы разума и науки в их современном понимании. На самом деле Кеплер только показал, что он руководствуется иными метафизическими идеями, чем его оппоненты. За его приведенными выше словами стояли фундаментальные теолого-гуманистические тезисы Коперника: Творение по своей структуре доступно человеческому познанию и, следовательно, дух не может противоречить восприятиям; нет непреодолимых различий между вышним и подлунным мирами, а Земля - одно из тел вселенского хоровода; Вселенная устроена по принципу простоты и т.д.[43]. Но система Коперника со всеми ее теолого-гуманистическими предпосылками в духе Ренессанса на самом деле была даже менее обоснована, чем современная ей птолемеевская система. И, как уже отмечалось, чтобы поддержать эту систему, нужно было прибегать к тем же средствам, какие использовались аристотелианцами, то есть выдвигать теологические аргументы против теологических и метафизические аргументы против метафизических. Новая система не имела неоспоримого и единого основания, которое позволило бы судить о ее истинности, тем более, что само вращение Земли оставалось неразрешимой загадкой до тех пор, пока сформулированный Ньютоном принцип инерции не объяснил, почему живущие на Земле люди не ощущают этого вращения[44].
Решение Кеплера последовать за Коперником, а значит, признать ощущения и данные наблюдений высшей инстанцией, прежде всего было спонтанным актом, а не выводом из рациональных (как бы мы их ни понимали) рассуждений. Следовательно, идеи Кеплера вырастают из культурного контекста, уже готового к тому, чтобы отвергнуть систему Птолемея.
5.1. Теоретико-научный анализ "Новой астрономии" Кеплера
Когда первоначальные попытки Кеплера вычислить орбиту Марса потерпели неудачу, это натолкнуло его на мысль заняться вычислениями орбиты Земли[45].
С этой целью, используя теорию Тихо Браге, он вычислил гелиоцентрическую позицию Марса (точка М на рис. 1) и Земли (точка Е) в данный момент времени
Т. Углы E и , образованные соответствующими радиус-векторами и диаметром, на котором расположен сегмент АС, дают представление о том, как была определена эта позиция. Следует только напомнить, что на рис. 1 орбитальные отношения изображены не так, как это было у Тихо Браге, а так, как они были впервые вычислены Кеплером с помощью данных Тихо.
Очевидно, гелиоцентричность здесь - это отнесенность к точке С; но, как было известно уже Тихо Браге, эта точка не соответствует ни Солнцу (точка А на рис. 1), ни, как могло бы казаться, центру орбиты Земли (точка В), хотя последнее стало известно позднее. Связав положение Марса с положением Земли (геоцентрическая долгота), Кеплер смог вычислить параллакс ЕМС и угол СЕМ[46]. Отсюда можно было получить относительное расстояние Земли от точки С (по закону синусов) из уравнения
где СМ = 100,000. Затем Кеплер выбрал другой момент Т', когда Марс опять находился в том же положении, проделав полное обращение по своей орбите, а Земля, учитывая ее собственное движение, находилась в другом положении (точка F на рис. 1). Применяя тот же метод, Кеплер вновь вычислил расстояние от Земли до точки C (CF). Наконец, он выбрал третий момент Т" (а затем и четвертый, который мы здесь опустим); соответственно, он получил третье положение Земли (точка G) и расстояние СG. Из этого он заключил, что С не может быть, как предполагалось, центром окружности, на которой лежали бы все три вычисленные положения Земли. Более вероятно, что эта точка является точкой экванта (punctum aequans), то есть точкой, вокруг которой Земля вращается с постоянной угловой скоростью, поскольку за время перемещения Земли из одной вычисленной точки в другую проходит полный марсианский год, а углы, образованные CE и CF, CF и CG, были равны.
Далее Кеплер собирался вычислить расстояния от точки экванта C и точки Солнца А до орбитального центра B, а также определить линию апсид, то есть диаметра, на котором лежат А, B и С. Однако АB могла быть определена только в том случае, если бы была известна действительная гелиоцентрическая долгота Марса по отношению к точке А (но не ранее названная "гелиоцентрическая долгота" Марса, которая на самом деле определялась по отношению к точке С). Поэтому Кеплер более не мог опираться только на теории Тихо; и он смело возвращается к ранее отвергнутым им же hypothesis vicaria, а ошибку, вытекавшую из их применения, пытается компенсировать грубым приближением в вычислениях. В результате он пришел к следующему выводу: Земля и Марс движутся по круговым орбитам с разделенным эксцентриситетом; две эксцентрические точки C и А (рис. 1) лежат на одной линии апсид, находясь на равном расстоянии от центра окружности по разные ее стороны.
Что же в конечном счете было основанием для такого вывода? Теоретические воззрения, проблематичные даже для самого Кеплера: 1. Теории Тихо (включая утверждения о гелиоцентрических положениях Марса и Земли) и 2. Hypothesis vicaria самого Кеплера, ранее столь решительно отвергаемые им. К тому же он использовал довольно грубое приближение в вычислениях; кроме того, он руководствовался классически-философским допущением о круговом движении небесных тел наряду с данными наблюдений Тихо, считавшимися почти непогрешимыми.
Но ни догматы, ни проблематичные допущения не помешали Кеплеру сделать следующий смелый шаг в сторону не только от Птолемея, но и от Коперника. Он отказывается от попыток строить эквантную окружность, то есть решать задачу, навязанную традицией, и вместо этого пытается выявить закономерность, объясняющую неравномерность орбитальной скорости Земли, вращающейся вокруг Солнца. Снова прибегнув к приближениям, он вычислил, что скорость Земли в точках перигелия и афелия обратно пропорциональна расстояниям до Солнца в этих точках. Этого минимума эмпирических данных оказалось достаточно, чтобы сразу же идти дальше, экстраполируя все точки на орбитальной кривой и распространяя этот вывод на все планеты. Таким образом, Кеплер формулирует следующие универсальные положения:
1. Все планеты движутся по круговым орбитам с разделенным эксцентриситетом; Солнце находится в одной из точек эксцентриситета.
2. Скорость планет обратно пропорциональна их расстояниям от Солнца.
Второе положение - так называемый закон радиуса.
Обращает на себя внимание не только спекулятивный характер этого закона, но и то обстоятельство, что Кеплер вообще искал такого рода закономерности, оставив попытки построения эквантной окружности. Тем самым он уже отошел от аксиомы Платона, то есть от утверждения, что планеты движутся с постоянной угловой скоростью. Определяющим здесь было его мистическое отношение к Солнцу. Воображаемые точки, вокруг которых, как считалось, вращаются небесные тела, были для него чем-то призрачным. Его тревожило уже то, что в системе Коперника Солнце на самом деле не находилось в центральной точке (и потому она не могла быть названа "гелиоцентрической" в строгом смысле)[47] и выполняло лишь вспомогательную роль источника света. Для Кеплера же Солнце представляло собой священный центр Вселенной, воплощение Бога-Отца. Поэтому от Солнца должна была исходить сила, заставлявшая планеты кружиться вокруг него (Кеплер связывал ее со Святым Духом, а неподвижные звезды - с Богом-Сыном). Поэтому так важно было определить эту силу, и поэтому вычислению подлежало движение планет по отношению именно к Солнцу, а не к воображаемой точке в пространстве.
Именно эта страстная убежденность в гелиоцентризме дала Кеплеру возможность искать и находить нечто вроде закона радиуса, а непоколебимая уверенность, выросшая на почве возрожденческого гуманизма, в том, что принципы устройства Вселенной постижимы для человеческого разума, придавала ему смелость, позволявшую видеть в рискованных экстраполяциях силу доказательства.
Вдохновляемый своей философией, он неотступно продвигался вперед, приступив к решению задачи, которая не могла не казаться аристотелианцам изумительной дерзостью - связать закон радиуса с принципом рычага, а затем с гильбертовским магнетизмом, тем самым связывая небесные и земные движения. Отсюда уже было недалеко до воззрения на Вселенную не как на подобие божественной формы жизни (instar divine animalis), а как на подобие часового механизма (instar horologii)[48]. Однако в своей гипотезе о причинах движения планет, которую можно было бы рассматривать как предвосхищение теории тяготения Ньютона, он вновь возвращается к аристотелизму, абсолютно противопоставляя покой и движение (он полагал, что если бы не сила, генерируемая Солнцем, то движение планет из-за их естественной инерции остановилось бы). Это закрывало ему путь к закону инерции и, следовательно, как мы теперь понимаем, к наиболее важному аргументу в пользу идеи Коперника.
После размышлений над небесной механикой он вернулся к теории движения Марса. Рассмотрим рис. 2.
По закону радиуса скорость планеты в точке P на орбите с центром C обратно пропорциональна расстоянию = PS до Солнца S: следовательно, время, затрачиваемое на движение в этом сегменте, пропорционально PS. Но как выразить эту зависимость точной формулой? Казалось невозможным найти прямое отношение между радиусом и временем движения. И здесь Кеплер вспомнил так называемую теорему Архимеда, выражающую отношение площади круга и радиуса окружности. Согласно этой теореме площадь сектора QCP можно рассматривать как предел суммы бесконечного числа бесконечно малых треугольников с высотой, равной радиусу окружности. Это подсказало Кеплеру идею связать время, за которое планета проходит путь PQ, не непосредственно с радиусом окружности, а с площадью сектора, описываемого радиус-вектором. Не долго думая, он применил теорему Архимеда, благодаря чему в его распоряжении оказалось достаточно сомнительное средство выражения через площадь, описываемую отрезком CP (то есть радиус-вектором орбиты) времени, необходимого для прохождения планетой соответственной дуги орбиты, и тем самым он получил по крайней мере косвенную возможность выразить соотношение времени и радиус-вектора в следующей формуле:
(1)
где t - время прохождения планетой дуги PQ, а Т - время, затрачиваемое планетой на прохождение всей орбиты. Если r = 1, то площадь QCP = 1/2 , площадь CSP = 1/2 e sin , а - площадь круга.