Файл: Стабников, В. Н. Процессы и аппараты пищевых производств учебник.pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 16.10.2024
Просмотров: 165
Скачиваний: 1
Общую длину труб змеевика находят из уравнения
F — ndcp L . |
(164) |
Длина одного витка tB (в м) змеевика
/в ^ л£>в.
Число витков п в змеевике.
_ JL_
/в |
' |
|
Высота змеевика Н (в м) |
|
|
Н = ( п — |
\)t . |
(165) |
в) Расчет пластинчатого теплообменника
Рассмотрим тепловой и конструктивный расчет пластинчато го теплообменника, служащего для пастеризации виноградного сока (см. рис. 71).
Получаемая в этом теплообменнике экономия тепла за счет двукратного использования его выражается коэффициентом ре генерации е.
Коэффициент регенерации представляет собой отношение ко личества тепла Q p , переданного продукту в секции регенерации, к общему количеству тепла Q 0 , затраченному на нагрев сока от
начальной температуры tn до температуры пастеризации |
(н° С , |
|||
т. е. |
|
|
|
|
Ор_____ Gc (tр — tH)_____ tp — ta |
(166) |
|||
Qo |
Gc (tu ^н) |
|||
|
||||
где G — количество сока, кг/с; |
|
|
|
|
с — средняя теплоемкость сока, Дж/(кг-К); |
|
|||
^р — температура сока после подогрева в секции регенерации, °С. |
|
|||
Коэффициент регенерации противоточных пластинчатых па |
||||
стеризаторов 8=0,6 Д-0,8. |
Q 0 (в Вт) на нагревание сока до |
тем |
||
Общий расход тепла |
||||
пературы пастеризации |
|
|
|
|
|
Qo — |
Q p Н- Q n . |
|
|
откуда |
|
|
|
|
|
Q n = |
Qo — Q p , |
(167) |
где Qn — расход тепла на нагрев сока в секции для пастеризации, Вт.
Так как Qp= e Q 0, то Qn= Q o —eQ0= Q o (l—е),
или
Qn = (1 — 8) Gc (tn — 60
и
Qp = sGc (tn— 60. |
,(168) |
Поверхность теплопередачи секции для регенерации, или
138
производительность теплообменника, определим из следующего уравнения:
Fp kp Atp ~ Qp ~ eGc ((л /ц) i |
(169) |
где Fp — поверхность теплопередачи в секции регенерации, м2;
kp — коэффициент теплопередачи в секции регенерации, Вт/(м2-К);
Д^р — средняя разность температур в секции, °С.
Разность температур Д/р в начале и конце секции регенера ции при установившемся процессе остается постоянной и опре деляется по формуле
Ыр = ta — tp.
Из формулы (166) имеем:
= ~Ь Б (tn — to) ,
тогда
А*р = * п - * н - в ( * п - * н ) = ( 1 - в ) ( / п - * н ) . |
(170) |
Поверхность нагрева секции пастеризации, или производи тельность пастеризатора, находят из следующего уравнения:
Fn kn Atn = Q„ = (1 - е) Gc (ta - 1„),
или |
|
|
|
FnknAtn =Gc(tn- t p), |
(171) |
||
где Fn —■поверхность нагрева пастеризатора, м2; |
пастеризации, Вт/(м2-К); |
||
kn— коэффициент теплопередачи в секции |
|||
Д/п — средняя разность температур в секции, |
°С, определяемая обычным |
||
путем. |
|
|
|
В уравнениях (170) |
и (171) |
|
|
Д^б = |
О'.Н |
и AtM= /г.к |
tp , |
где tT,а и tT.к — начальная и конечная температура горячей воды, °С.
Расход горячей воды Wr (в кг/с) в секции пастеризации
WT |
___ On___ |
(172) |
|
|
|
||
|
СВ О г .Н ■ |
^ г - к ) |
|
После пастеризации и выдержки сок охлаждается водой (или рассолом) в секции охлаждения до конечной температуры; при этом количество тепла Q0 (в Вт), отданное охлаждающей воде;
Q0 = Gc (t„ — tк) — Qp = Gc (tn— tK) — bGc (tn — tH) ,
или
Qo — Gc [(<„ — ^k) — e O n — * h)J . |
(173) |
Поверхность теплопередачи F0 (в м2) в секции охлаждения
FО— Qo |
(174) |
К А /о |
|
139
Входящие в формулу (174) значения A t и k 0 находят обыч ным путем. При этом температуру сока t' поступающего в сек
цию охлаждения, находят из выражения:
откуда
'р = 'п + 'и - * р - |
(175) |
Расход охлаждающей воды в секции охлаждения Wx (кг/с) находят из следующего уравнения:
|
|
G c(/p - g = |
r |
xCB(ix.K- * x.H), |
(176) |
где |
G — количество |
охлаждаемого |
пастеризованного сока, |
кг/с; |
|
с |
и св— средняя теплоемкость сока и воды, Дж/(кг-К); |
|
|||
tp и tK— температура сока до и после охлаждения, °С; |
|
||||
*х-н и /х.к — начальная |
и конечная |
температура охлаждающей |
воды, °С. |
Общую длину канала, образованного последовательно вклю ченными в работу пакетами пластин, находят из теплового ба ланса секции.
Составим, например, уравнение теплового баланса в общем виде при охлаждении G (в кг/с) сока от t\ до h (в 0 С)
Gc (ti — 12) = F0 koAt0, |
(177) |
где k0, F0 и At0— соответственно коэффициент теплопередачи, |
поверхность |
теплопередачи и средняя разность температур в зоне охлаждения.
При известной ширине канала h (в м), расстоянии между ними h (в м), скорости движения сока w (в м/с) и его плотности р (вкг/м3) масса сока G (вкг/с), протекающего по одному кана-
Поверхность теплопередачи F 0 выразим через произведение удвоенной ширины пластины h (м) на требуемую длину пути L потока сока, зная, что поток сока охлаждается с двух сторон, т. е. F 0= 2 b, тогда уравнение (177) запишется в виде
bhwpc (tj — 12) = 2bLK 0
откуда общая длина канала L (в м)
hwpc(t1— /,)
(178)
2*0 Atо
При известном расходе жидкости V |
(в м3/с) ширину канала |
b (в м) определяют из уравнения неразрывности потока: |
|
Ь - - |
(179) |
whn ’
где п — число параллельных ходов.
___у_
(180)
bhw
Эквивалентный диаметр канала d3 (в м) составит
140
dB |
4f |
4bh |
(181) |
|
= 2h. |
П26
Пр и м ер . Определить поверхность теплопередачи, число пластин и число пакетов в секции регенерации пластинчатого
теплообменника производительностью |
0 = 1,4 кг/с виноград |
|
ного сока, если температура сока, |
поступающего в секцию, tB = |
|
= 15° С и уходящего из нее + = |
92° С, |
коэффициент регенера |
ции е = 0,7. Содержание сухих веществ |
в соке В = 15% масс., |
средняя теплоемкость сока с= 4000 Дж/(кг-К) |
и плотность его |
|||
р= |
1060 |
кг/м3. |
Рабочая поверхность пластины |
f —0,2 м2, рас |
стояние |
между |
пластинами п—0,0028 м, толщина пластины |
||
6 = |
0,001 |
м и ширина проточной части ее 6= 0,27 м. |
||
|
Р е ш е н и е . |
1. Определяем среднюю разность температур: |
а) температура холодного сока после подогрева его в секции регенерации
fx = |
15 + |
0,7 (92 — 15) = 6 8 ,7 °С; |
б) разность температур |
в секции регенерации [по формуле |
|
(170)] |
|
|
Мр = |
(1 — 0,7) (92 — 15) = 23,1 °С; |
в) температура горячего сока на выходе из секции регенерации
t2 = tHJr М р = 15 + 23,1 = 38,1 °С.
Значения At а и AtM для секции определяем по следующей схеме теплообмена:
92 °С сок горячий 38,1 °С
6 8 ,9 °С сок холодный 15°С
At$ = 23,1 °С AtM= 2 3 ,1 °С.
Полученные значения указывают на то, что по длине кана лов теплообменника перепад температур остается постоянным иДг = 23,1°С.
2. Определяем средние температуры потоков и их теплофи
зические данные: |
|
|
а) |
средняя температура нагреваемого сока |
|
|
6 8 ,9 + 1 5 |
42 °С. |
|
/у — |
|
|
2 |
|
При этой температуре для виноградного сока |
||
|
р = 1 • 10—3 Па-с и %= |
0,54'Вт/(м-К) |
б) |
средняя температура горячего сока |
|
|
/ г = 0 ,5 (9 2 + 38,1) = 65 °С, |
|
При этой температуре сока |
|
ц = 0 ,6 8 -1 0 -3 Па-с и Я = 0,59 Вт/(м-К).
3.Приняв предварительно скорость движения сока в ка
нале да = 0,3 м/с, находим число каналов п в пакете из урав нения неразрывности потока:
G1,4
п= ------- = ------------------------------------- 5 84
ббдар 0,27-0,0028-0,3-1060 |
‘ |
141