Файл: Соляков, В. К. Введение в химическую термодинамику прогр. пособие для самостоят. изучения.pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 23.10.2024
Просмотров: 95
Скачиваний: 0
2—16 Интегрирование полученного выражения от температуры Т{ до температуры Т2 дает
Т2 |
|
(Ор)г, —(Qp)r, = — J hCPdT |
<2-36) |
Г,.
С помощью этого уравнения, называемого обычно у р а в н е н и е м К и р х г о ф а , по тепловому эффекту при одной температуре можно рассчитывать тепловой эффект при другой температуре, если известны теплоем кости всех исходных веществ и ■продуктов реакции.
Уравнение Кирхгофа может быть записано также с использованием энтальпий рассматри ваемой реакции при температурах Т\ и Г2:
(ДЯ)Га - (ДЯ)Г( =
г,
J ДСр dT |
(2.37) |
Т,
Аналогичные соотношения справедливы так же и для реакций, протекающих при постоян ном объеме:
тг
(Qv)r, (Qo)r, = |
J |
ЛС0 dT |
.(2.38) |
|
г, |
|
|
|
Тг |
|
|
(Д£/)г> — (ДС/)Гі = |
I |
ДCv dT |
(2.39) |
|
г, |
|
|
Для вычисления .интегралов в правой части равенств (2.36) —(2.39) необходимо знать за висимость от температуры величины ДС. По скольку эта величина представляет собой алгебраическую сумму теплоемкостей ве ществ— участников реакции, найти функцию AC = f(T) не трудно, если известны темпера турные зависимости для теплоемкостей всех участвующих в реакции веществ. Эти зави симости, найденные преимущественно экспе риментальным путем, обычно описываются3
3 Зак. 737 |
65 |
2 - 1 6 |
эмпирическими уравнениями |
в форме |
степен |
|
|
ного ряда: |
|
|
|
|
(Ср)аі = *аі + ѴаіТ + Уа1Т2 + ... |
' (2.40) |
||
|
(СР)в. = «вг+Ра(Т + Ѵв/2+ ••• |
(2-41) |
||
|
Входящие в уравнения |
коэффициенты |
а, |
|
|
ß, у, ... приведены в физико-химических |
и |
'теплофизических справочниках. Пользуясь этими данными, искомую зависимость ДСѵ —
=f(T) определяют путем алгебраического суммирования коэффициентов, стоящих при одинаковых степенях Т, предварительно умно жив их на стехиометрические коэффициенты
йі и Ьі\
ДСр = (2ьіав, - 2 аіаа,) +
+ (2**РВ<- 2 |
“(Рау |
+ |
|
+ ( 2 ^ - 2 ^ |
. ) ^ + |
. . . |
(2.42) |
Выражение (2.42) можно записать в со
кращенном виде |
|
ДСр= Да + Aßr = Дуг2 + ... |
(2.43) |
Точно так же определяют и температурную зависимость для ДСѵ, только при других чис ловых значениях коэффициентов а, ß и у, ко торые в данном случае должны характеризо вать теплоемкость участников реакции при по стоянном объеме.
|
Контрольный вопрос |
|
|
_ В |
каком соотношении находятся |
значения |
|
Qp |
при температурах |
500 и 1000 К |
для ре |
акции |
|
|
|
|
Нг + ~2 02 |
= Н20 (пар) |
|
2—16 если теплоемкости участников реакции пред ставлены следующими (упрощенными) урав нениями:
|
|
(с р)на= |
29,1 |
- 0,838 • 10 |
~ 3 T Дж /(К • моль) |
|||
|
|
(Ср)о.2= |
25,8 |
+ 1 3 ,0 - |
10“ 3 T Д ж /(К • моль) |
|||
|
|
(С дЭ і-ш |
= |
30,2 |
+ 9,92 • 10“'3 T Дж/(І< • моль) |
|||
|
1) |
(Q p)l000 |
> |
(Qp)äOO |
2 |
- -7 |
||
|
2) |
(Q p)l000 = |
(Qp)500 ~~ 2 |
- -8 |
||||
|
3 ) |
(Q p)l000 |
< |
(Q p )500 |
2 - - 3 |
|||
2 - 17 |
1) |
«Qp = QpejO, + QcoP- |
|
(Qfc°op + Qco°.?)». |
Ответ неправильный.
Используемые в расчете теплоты сгорания Qpe°cv
<2соР> QfcO всегда даются в расчете на 1 моль со ответствующего вещества. В рассматриваемой же реак ции (2.30) из 1 моль FesCU образуется 3 моль FeO.
Кроме того, необходимо обратить внимание на сле дующее. Хотя введение в расчетную формулу величины
<2со,Р формально |
правильно, однако |
очевидно, что |
она равна нулю, так |
как СОг — высший |
окисел углеро- |
да^ находящийся в стандартных условиях. |
||
Вернитесь к фрагменту 2—10 и выберите правиль |
||
ный ответ. |
|
|
2 — 18 |
1) «АЯ = |
—1856 кДж/моль». |
|
||
|
Ответ неправильный. |
|
|||
|
Легче всего в этом убедиться, рассмотрев схему |
||||
|
расчета, представленную на рис. 2.6. |
|
|||
|
Поскольку при сгорании в кислороде одного моля |
||||
|
углерода н двух молей водорода получаются те же |
||||
|
окислы |
и в том |
же количестве, что и при |
сгорании |
|
|
моля метана, эти окислы (1 моль СОг и 2 моль НгО) |
||||
|
можно рассматривать как промежуточное состояние |
||||
|
системы при получении метана в двухстадинном про |
||||
|
цессе: на первой стадии углерод и водород превра |
||||
|
щаются в окислы (сгорают) с присоединением 2 молъ |
||||
|
кислорода; на |
втором этапе эти окислы превращаются |
|||
|
в метан, а 2 |
моль кислорода выделяются. |
Очевидно, |
||
|
что вторая реакция прямо противоположна реакции |
||||
|
горения |
метана, |
поэтому тепловой эффект ее |
численно |
3* |
67 |
2—18 |
будет равен теплоте сгорания |
метана, но с противопо |
|
ложным знаком. |
|
|
Р, т |
р, т |
|
Рис. 2.6. Схема |
расчета |
теплового эффекта |
реакции |
|||
|
образования СН, |
по |
теплотам сгорания CHj, |
С и Н2. |
|||
|
Согласно закону Гесса, тепловой эффект реакции |
||||||
|
образования метана из углерода и водорода не зависит |
||||||
|
от того, в одну |
или |
несколько |
стадий осуществляется |
|||
|
эта реакция. Таким образом, искомая величина ДН |
||||||
|
может быть определена как алгебраическая сумма теп |
||||||
|
ловых |
эффектов |
первой и второй стадий двухстадий |
||||
|
ного процесса. Как видно из предыдущего, тепловые |
||||||
|
эффекты этих стадий имеют разные знаки, поэтому при |
||||||
|
их суммировании никак не может получиться такая |
||||||
|
большая величина, как 1856 кДж/моль. |
|
|||||
|
Вернитесь к фрагменту 2—13 и выберите правиль |
||||||
|
ный ответ.3 |
|
|
|
|
|
|
2 -1 9 |
3) |
«q„ == 108,9 кДж». Правильно. |
стра |
||||
|
Переходите |
к |
гл. 3 |
(иа |
следующей |
нице) ,