Файл: Мясников, В. А. Программное управление оборудованием.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 15.10.2024

Просмотров: 217

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

граммного управления; она имеет самостоятельность, равную шести.

Очевидно, что^чем больше самостоятельность систем, тем меньше входной информации ей требуется для выполнения того или иного задания, для достижения той или иной цели..

Значительное сокращение входной информации, вводимой

впрограммирующее устройство при программировании чистовой

иполучистовой обработки штампов дает применение поверхност­ ного программного управления. Ниже рассматривается способ программирования черновой обработки штампов, который позво­ ляет уменьшить объем входной информации примерно в /г2 раз по сравнению с поверхностным методом (k2 — число слоев снимае­

мого металла).

Всякий объем в трехмерном пространстве можно рассматри­ вать как трехмерное многообразие, и если он задается уравне­ нием F (xlt х 2, х 3, jt4) = 0, то структура дифференциального ана­

лизатора, позволяющая воспроизводить множество траекторий, заполняющих данный объем, будет описываться уравнениями:

dx,

__

 

dF

 

 

 

OF .

 

dF

dtp

 

Ul

dx2

 

U“

 

dx3 '

U'3

dxt

dx2 __

 

dF

 

,

_

dF

 

 

"

dF

1 й р

 

Ul ~ d ^ ~ ' “4 Ж Г — U & ~ d ^ ~

dx3

 

 

dF

 

 

 

dF .

 

dF

— r L

=

U > - 5---------- И 4 - 3 -------- h « » - 3 —

;

dtp

 

г

dx!

 

1

dx2

1

"

5.v4

dx4 __

 

dF

,

 

 

dF

 

 

■ dF

dtp

 

U;>

dx2

'

Ur°

dx2

 

U& dx3

Например, если заданный объем ограничен поверхностью сферы х2 + у2 + z2 = R2, то структуру дифференциального ана­

лизатора, воспроизводящего траектории внутри этого шара, можно описывать уравнениями:

dx

■илу ■— u2z u3R;

dtp

dy = Uxx + u4z + ubR\

dtp

-|L = u2x — uAy — ueR\

dR = —u3x + u5y U BZ.

dtp

Задание коэффициентов us определяет ту или иную траекторию в этом объеме. Пусть заданы какие-то значения us; программирую­

щее устройство вырабатывает в соответствии с этим управляющие сигналы, которые отрабатываются приводами подач станка, фреза перемещается по траектории, соответствующей этим значениям us,

295


и производит выборку металла. Как только фреза дошла до гра­ ницы заданного объема, необходимо так изменить коэффициенты us,

чтобы новая траектория, как и первая, пролегала внутри задан­ ного объема. Эта траектория, как и первая, должна быть такой, чтобы фреза не перегружалась, но работала все время с нагрузкой, близкой к максимальной. Индикатором нагруженное™ фрезы мо­ жет служить электрическая мощность мотора, вращающего ее.

В соответствии с изложенным на рис. 158 изображена схема управления черновой обработкой. Задатчик траектории ЗТ осу-

Рис. 158. Схема управления черновой обра­

Рис. 159. Выборка металла

боткой:

из объема

Д — двигатель, вращающий фрезу; З Т — задат­

 

чик траектории

 

ществляет изменение коэффициентов при достижении границ за­ данного объема (о чем сигнализирует ПУ) и при отклонении элек­ трической мощности N двигателя Д от заданного значения мощ­ ности Nx и (AN).

Величина Nx назначается в зависимости от типа фрезы, обра­

батываемого металла и с учетом других технологических требо­ ваний. Задание us может осуществляться либо по какому-нибудь

алгоритму, либо случайно. Программирующее устройство может быть выполнено на непрерывных элементах, так как требуемая точность черновой обработки невысока. Входная информация сводится в общем случае к заданию коэффициентов многообразия, ограничений и величины Nt .

Для примера рассмотрим простейший алгоритм при выборке металла из верхнего диска полусферы (рис. 159). Фреза поме­ щается в отверстие, высверленное в центре диска, и движется от точки а0до тех пор, пока нагрузка на фрезе не возрастет до допу­ стимой; после этого она движется по окружности Г г до тех пор,

296


пока не вернется в точку <зь о чем просигнализирует уменьшение

потребляемой мощности.

Из этой точки фреза снова движется по горизонтальному ра­ диусу до набора полной мощности, до точки а2, потом она будет

двигаться по окружности Г 2 и т. д. до тех пор, пока не будет вы­ бран весь металл из диска до радиуса R i; после этого фреза пе­

рейдет к отработке другого диска, лежащего ниже, с радиусом, меньшим /?!, и так до тех пор, пока не будет выбран металл из всей полусферы. При этом программирующее устройство полу­ чается очень простым.

Любой отрабатываемый объем можно аппроксимировать час­ тями объемов различно расположенных сфер. При аппроксимации объемов в зависимости от конкретных требований могут быть ис­ пользованы и другие конфигурации. Рассмотренная система яв­ ляется системой объемного программного управления.

Технологические процессы производства изделий делятся на классы по характеру взаимодействия между орудием и предметом обработки. К первому классу относятся процессы, характеризуе­ мые точечным воздействием орудия на предмет обработки, когда взаимодействие происходит на малой относительно обрабатываемой поверхности элемента рабочей части орудия, который может рас­ сматриваться как точка. Рабочее движение в этом случае опре­ деляется формой обрабатываемой детали, а орудие имеет большую универсальность. Второй и третий классы характеризуются тем, что взаимодействие между орудием и предметом обработки осу­ ществляется по линии и по поверхности. Рабочее движение ста­ новится кинематически простым, а орудие — узкоспециализиро­ ванным.

Автоматика п электропривод сегодняшнего дня, техника про­ граммного управления позволяют осуществлять сколь угодно кинематически сложные движения. Траектория движения является самым гибким элементом технологического процесса. Переход же от одной формы обрабатывающего орудия, например штампа,

к другой является значительно более трудным делом. Поэтому

вусловиях бурного развития науки и техники, когда необходимо быстро и дешево перестраиваться с производства одних моделей машин на производство других, более новых и совершенных, наи­

большими возможностями обладают технологические процессы с точечным взаимодействием орудия и предмета обработки. Для повышения производительности процессов с точечным взаимодей­ ствием идут по пути концентрации энергии в точке обработки и од­ новременного использования нескольких точечных орудий.

Интересно отметить аналогию между классификацией техноло­ гических процессов по характеру взаимодействия между орудием и предметом обработки и приведенной выше классификацией систем программного управления. Во втором случае также выде­ ляются системы позиционного, контурного, поверхностного и объемного программных управлений, только эта классификация

297


относится прежде всего к сфере подготовки входной информации н обусловлена стремлением уменьшить объем информации, вводи­ мой в программирующее устройство в зависимости от вида работ. Например, для управления сверлильным станком применяется позиционное управление; для управления газорезательным ав­ томатом, осуществляющим раскрой листов, — контурное; для уп­ равления процессами обработки поверхности детали на универ­ сальном фрезерном станке — поверхностное; для управления про­ цессами выборки металла из заданного объема в случае черновой обработки штампов — объемное программное управление. Про­ граммное управление обработкой каждой конкретной детали должно быть разумным сочетанием этих четырех видов управления.

Системы программного управления станками в настоящее время состоят из трех частей: металлорежущего станка, обору­ дованного управляемым приводом подач; программирующего уст­ ройства (интерполятора), которое вырабатывает управляющие сигналы на приводы подач станка; цифровой универсальной ма­ шины, которая подготавливает входную информацию для интер­ полятора на основе информации о подлежащих обработке дета­ лях (источником такой информации может быть чертеж детали).

Проблема уменьшения объема входной информации непосред­ ственно связана с распределением функций между этими тремя составными частями.

Интерполяторы являются промежуточными вычислительными устройствами. В настоящее время наблюдается тенденция уста­ навливать их непосредственно у станка.

Рассмотрим три основных способа математического описания деталей с точки зрения широты класса деталей, объема входной информации и удобства программирования эквидистаит.

Первый из этих способов — описание деталей тригонометри­ ческими рядами. В 1955 г. фирмой SNECMA во Франции были начаты работы по созданию цифро-аналогового комплекса для управления универсальными фрезерными станками с целью мо­ дернизации изготовления копиров, которое являлось узким местом производства. В основу этих работ было положено описа­ ние конфигурации деталей тригонометрическими рядами, пред­

ложенное Файяром [45].

 

Координаты

поверхности при этом задаются так:

 

х = а0(Р) + Л ' 0 (Р) since;

 

П

 

У =

b0(Р) + X К

(Р) cos па + bn(Р) sin /га];

 

О

 

 

ш

 

z = £ [dm(Р) cos та ф- ет(Р) sin та];

 

о

 

 

О= С0

Cg ф- Xi Cgsin gp.

298


Каждый из

коэффициентов этих

уравнений

а0,

х 0, Ь0,

ап

bn, dm,

ет, . . .

является функцией

(3

вида

а0 =

А 0 +

+

р

sin р(3;

А о, Ар, Ар = const

при

этом

а

изменяется

от

+ S

о

a (3 — от 0 до я или от я до 2я. Оси ортогональны и 0

О до 2я,

является дополнительной координатой, определяющей вращение осей ОХ, ОУ вокруг OZ.

Эти параметрические уравнения

включают

с себя группы

тригонометрических разложений и

описывают

широкий класс

поверхностей в пространстве путем

изменения

двух параметров

каждой группы а и |3.

В систему могут входить и другие вспомогательные коорди­ наты для упрощения описания некоторых частных видов поверх­

ностей.

Следует отметить, что параболические кривые и поверхности описываются тригонометрическими рядами очень сложно. Но имеется большой класс поверхностей, который этими рядами опи­ сывается хорошо.

Предлагаемая Файяром методика аппроксимации системы то­ чек тригонометрическим рядом не является строгой. Рассчитан­ ная по этой методике кривая будет проходить через заданные точки, но между точками принципиально возможны большие выбросы.

С помощью тригонометрических рядов с переменными коэф­ фициентами можно описать поверхность в целом, а траектории на этой поверхности задавать с помощью блока автоматического режима; последнее позволило бы значительно уменьшить объем информации, вводимой в программирующее устройство.

Программирование эквидистант исходя из тригонометричес­ кого описания контуров — сложный процесс. В устройстве экви­ дистантные кривые программируются очень приближенно и удо­ влетворительная точность при этом получается лишь благодаря использованию инструмента очень малых размеров (диаметром

2 мм).

Существует класс интерполяторов, который базируется на описании деталей алгебраическими уравнениями, причем одни уравнения основаны на описании деталей полиномами, другие — на описании неявными алгебраическими функциями [5].

Недостатком такого математического описания является узость класса воспроизводимых кривых. Даже такую распространен­ ную кривую, как окружность, требуется аппроксимировать несколькими параболами. Поверхность при таком подходе при­ ходится задавать как совокупность контуров всех проходов, что приводит к большому объему входной информации.

Программирование эквидистант с помощью параметрического описания также является трудоемким, поскольку при этом необ­ ходимо знать частные производные кривой, которые в данном слу­ чае сложно вычислить.

299