Файл: Учереждение высшего профессионального образования московский государственный университет приборостроения и информатики.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 10.04.2024

Просмотров: 375

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Общие сведения об электрических и радиотехнических цепях

Радиотехнический канал связи

Классификация сигналов

Сигналы и их основные характеристики

Корреляционные характеристики детерминированных сигналов

Вопросы и задания для самопроверки:

Простейшие разрывные функции

Методы анализа электрических цепей

Вопросы и задания для самопроверки

Спектры амплитуд и фаз периодических сигналов

Спектральный анализ цепи

Спектральные плотности амплитуд и фаз непериодических сигналов

Примеры определения спектральной плотности сигналов

Определение активной длительности сигнала и активной ширины его спектра

Вопросы и задания для самопроверки:

Комлексная передаточная функция и частотные характеристики цепи

Спектральный анализ цепей при непериодических воздействиях

Вопросы и задания для самопроверки гл. 5, 6:

Вопросы и задания для самопроверки:

Частотный принцип преобразования радиотехнических сигналов

Вопросы и задания для самопроверки:

Литература





Рис. 8.22. ВАХ нелинейного (1) и линейного (2) резисторов

Только при воздействии малых напряжений нелинейные элементы можно приближенно заменять линейными элементами. Например, характеристики диодов и транзисторов линеаризуются, если воздействует напряжение .

Отметим, что кроме линейных и нелинейных элементов используются параметрические элементы, параметры которых зависят от времени. Некоторые свойства параметрических элементов близки к свойствам нелинейных элементов, так как на практике изменений параметров добиваются подачей дополнительных сигналов на параметрический элемент и параметры параметрических элементов в итоге оказываются зависимыми от напряжений или токов в цепи.

Если в цепи, кроме линейных элементов, содержатся нелинейные резисторы и (или) нелинейные конденсаторы и (или) нелинейные катушки, то такая цепь называется нелинейной. Процессы в такой цепи в общем случае описываются нелинейным дифференциальным уравнением. Общих аналитических методов решения этих уравнений не существует. Как правило, эти уравнения решают на ЭВМ с помощью численных методов. Например, с помощью численных методов анализируются нелинейные цепи в программах схемотехнического моделирования.

Основные явления, свойственные любой нелинейной цепи, не обязательно изучать, сопоставляя и решая сложные нелинейные дифференциальные уравнения. Общие свойства нелинейной цепи будут проявляться в простых цепях, содержащих один нелинейный резистор. Кстати, простые нелинейные цепи наиболее часто используются в радиоэлектронике. Для их анализа будем использовать один из аналитических методов - метод тригонометрических формул.

В соответствии с методом тригонометрических формул вольт-амперную характеристику нелинейного резистора аппроксимируем полиномом:
(8.29)

где коэффициенты зависят от вида ВАХ и находятся, как правило, приравниванием значений полинома (1) в выбранных (n+1) точках к значениям в этих же точках реальной ВАХ.

Пусть к нелинейному элементу приложено гармоническое напряжение . Для простоты начальная фаза этого напряжения выбрана равной нулю. Подставляя это напряжение в формулу (8.29), получим ток, протекающий через нелинейный элемент,
8.30)
Используя известные тригонометрические формулы:

перепишем выражение для тока в виде суммы постоянной составляющей и гармоник тока с кратными частотами (в виде ряда Фурье):



где




.
Из анализа выражения (8.30) следует общее свойство нелинейных цепей - порождать в спектре выходного сигнала новые частоты, которых не было в спектре входного сигнала. Номер наивысшей гармоники в спектре выходного сигнала соответствует степени аппроксимирующего полинома.

Как известно, сумма гармоник различных, но кратных частот образует периодический сигнал, форма которого отличается от формы гармонического колебания. Следовательно, в нелинейных цепях в общем случае искажается форма сигнала. Гармонический сигнал при этом становится негармоническим, треугольный сигнал может стать трапецеидальным и т.п.



Рис. 8.23. Спектр входного (а) и выходного (б) сигналов

На рис. 8.23 показаны спектры входного (а) и выходного (б) сигналов нелинейной цепи, описываемой полиномом третьей степени. Как видим, в выходном сигнале появилась постоянная составляющая, а также вторая и третья гармоники. Отметим, что возникновение новых гармоник, которых не было во входном сигнале, не нарушает законов причинности и сохранения энергии.


Новые частоты: постоянную составляющую и вторую гармонику, можно получить с помощью параметрического элемента - аналогового перемножителя, подавая на него управляющий гармонический сигнал, с частотой точно равной частоте приложенного к элементу входного напряжения.

Свойство нелинейных цепей порождать новые гармоники и искажать форму сигнала широко используется в радиоэлектронике при создании разнообразных устройств, таких как нелинейный усилитель на транзисторе или на операционном усилителе, выпрямитель на диодах, умножитель частот.

8.2.4. Воздействие на нелинейный элемент двух сигналов.


Рассмотрим более сложный случай, когда на нелинейный элемент воздействуют два сигнала (рис. 8.24). В качестве нелинейного элемента используют диоды, транзисторы, операционные усилители и т.п. Для простоты в качестве входных сигналов будем использовать гармонические сигналы с нулевыми начальными фазами: . Частоты этих двух сигналов в общем случае различны: .



Рис.8.24. Воздействие на нелинейный элемент двух сигналов

Нелинейную зависимость тока i от напряжения и на нелинейном элементе аппроксимируем полиномом третьей степени:
(8.31)
Степень нелинейности элемента определяют в формуле (8.31) два слагаемых: и . Чем больше коэффициенты и , тем больше будет отличаться вольт-амперная характеристика нелинейного элемента от вольт-амперной характеристики линейного элемента. Для выявления основных свойств нелинейной цепи при бигармоническом воздействии такой аппроксимации более чем достаточно.


Результирующее напряжение на нелинейном элементе равно сумме гармонических сигналов: . Подставляя эту сумму в выражение (8.31) и используя тригонометрические формулы, после несложных преобразований получим:




(8.32)





.
Как видим, в составе тока появились известные нам из предыдущего параграфа постоянная составляющая, а также первые, вторые и третьи гармоники. Эти составляющие возникают от каждого из входных гармонических сигналов в отдельности.

Кроме того при одновременном воздействии двух сигналов возникают дополнительные составляющие – комбинационные гармоники. Комбинационные гармоники продукт взаимодействия двух входных гармонических сигналов в нелинейном элементе. Эти гармоники записаны в последних шести слагаемых формулы (8.32). Частоты комбинационных гармоник в общем случае определяются выражением: , где , - частоты входных сигналов, т, р =1,2,3,..., причем , где п -степень аппроксимирующего полинома.

Анализируя работу параметрических элементов (например, аналогового перемножителя при воздействии двух сигналов), легко убедиться в том, что в параметрических цепях также возникают комбинационные гармоники. Как правило, спектр комбинационных гармоник в параметрических цепях значительно беднее спектра комбинационных гармоник в нелинейных цепях. Например, при подаче на аналоговый перемножитель двух гармонических сигналов на его выходе формируются только две комбинационные гармоники с частотами
.

Комбинационные гармоники используются в преобразователях частоты, модуляторах и детекторах (демодуляторах).

Преобразователь частоты - это устройство, в котором осуществляется сдвиг спектра входного сигнала по частотной оси с сохранением информации, содержащейся во входном сигнале. Принцип работы преобразователя частоты поясняется спектральными диаграммами на рис. 8.24.

Для простоты в качестве входного сигнала выбран амплитудно-модулированный сигнал. Центральная частота (несущая) входного АМ-сигнала и частота вспомогательного генератора, называемого гетеродином, показаны на рис. 8.25, а.



Рис. 8.25. Спектральная диаграмма преобразователя частоты
АМ-сигнал и сигнал гетеродина, воздействуя на нелинейный элемент, обусловливают появление в составе тока нелинейного элемента множества комбинационных гармоник, три из которых выделяются с помощью фильтра и поступают на выход преобразователя. Центральная частота выходного сигнала преобразователя называется промежуточной. На рис. 8.25,б показана промежуточная частота, равная разности частоты несущей и частоты гетеродина: .

Из анализа амплитуд и полных фаз комбинационных гармоник (8.32) следует, что при любом изменении частоты или амплитуды входного сигнала соответствующие изменения будут возникать у сигнала с промежуточной частотой. Однако линейная зависимость в этом случае будет наблюдаться только при использовании комбинационных гармоник с частотами
, (8.33)
где р=1,2,3,... . Если р>1, то преобразователь называют преобразователем на гармониках гетеродина. На практике наиболее часто используют случай р = 1 и получают преобразователь частоты вниз, если