Файл: Учереждение высшего профессионального образования московский государственный университет приборостроения и информатики.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 10.04.2024

Просмотров: 390

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Общие сведения об электрических и радиотехнических цепях

Радиотехнический канал связи

Классификация сигналов

Сигналы и их основные характеристики

Корреляционные характеристики детерминированных сигналов

Вопросы и задания для самопроверки:

Простейшие разрывные функции

Методы анализа электрических цепей

Вопросы и задания для самопроверки

Спектры амплитуд и фаз периодических сигналов

Спектральный анализ цепи

Спектральные плотности амплитуд и фаз непериодических сигналов

Примеры определения спектральной плотности сигналов

Определение активной длительности сигнала и активной ширины его спектра

Вопросы и задания для самопроверки:

Комлексная передаточная функция и частотные характеристики цепи

Спектральный анализ цепей при непериодических воздействиях

Вопросы и задания для самопроверки гл. 5, 6:

Вопросы и задания для самопроверки:

Частотный принцип преобразования радиотехнических сигналов

Вопросы и задания для самопроверки:

Литература

, равном примерно 2,4 и 5, приведен на рис. 8.15. Из анализа этих спектров и графиков рис. 8.14 следует, что ширина спектра сигнала с интенсивной угловой модуляцией при примерно равна удвоен­ной девиации частоты ( ).

Отметим, что использование угловой модуляции с большим ин­дексом позволяет получить увеличенную помехоустойчивость при передаче сложных сообщений. Сигналы с угловой модуляцией мень­ше подвержены влиянию импульсных помех, возникающих в про­мышленных электроустановках, при грозах, в транспортных средствах с электрическим питанием и т. п. Поэтому фазовая и частотная моду­ляции в настоящее время широко используются в радиовещании, в космической связи, в устройствах сотовой связи и в других системах передачи информации с малыми искажениями.

Для увеличения скорости передачи сообщений в современных сис­темах связи и передачи информации используются смешанные виды модуляции. Например, в модемах используется амплитудно-фазовая или квадратурная модуляции. При такой модуляции изменяется как амплитуда, так и начальная фаза (и частота) квазигармонического сигнала.

8.2.2. Электрические фильтры


В современных системах связи широко используется так называемый частотный принцип разделения сигналов. В соответствии с этим принципом каждому сообщению или виду сигнала отводится своя полоса частот. Так строится, например, радиовещание и телевещание в нашей и других странах. Радиостанции и телевизионные передатчики работают в строго определенных не перекрывающихся диапазонах длин волн. Важнейшую роль при обработке сигналов в таких системах играют электрические фильтры.

Электрический фильтр ˗ это устройство, предназначенное для пропускания сигналов только в определенной полосе частот; сигналы, частоты которых не попадают в эту полосу, подавляются. Фильтры широко используются в вычислительной технике. В источниках питания фильтры применяются для подавления помех, наводок и высоко­частотных шумов. На материнских платах персональных компьютеров, как правило, устанавливаются несколько фильтров, устраняющих взаимное влияние сигналов друг на друга. Персональные ЭВМ рекомендуется подключать к сети через фильтр, который не пропускает импульсные помехи, высокочастотные наводки и шумы.


По диапазону пропускаемых частот фильтры делятся на фильтры нижних частот (ФНЧ), фильтры высоких частот (ФВЧ), полосовые (ПФ) и заграждающие (ЗФ) (или режекторные (РФ)) фильтры. Условные обозначения фильтров показаны на рис. 8.16. ФНЧ пропускают сигналы с низкими частотами и подавляют сигналы с высокими частотами. ФВЧ, наоборот, пропускают сигналы с высокими частотами и подавляют сигналы с низкими частотами. ПФ пропускают сигналы только в определенной полосе частот вблизи некоторой центральной частоты, расположенной, как правило, в области относительно высоких частот. ПФ не пропускает сигналы с низкими и высокими частотами. Наконец, ЗФ пропускает сигналы с низкими и высокими частотами и задерживает сигналы с частотами, расположенными вблизи центральной частоты заграждающего фильтра.



Рис. 8.16. Условные обозначения фильтров

Фильтр является четырехполюсником. Поэтому для описания свойств фильтра используются функции четырехполюсника, из которых в первую очередь - комплексный коэффициент передачи по напряжению где и ˗ входное и выходное напряжения фильтра соответственно. Этот коэффициент передачи позволяет получить основную характеристику фильтра – амплитудно-частотную характеристику (АЧХ). АЧХ определяется как модуль комплексного коэффициента передачи фильтра: . АЧХ легко определить экспериментально, измеряя с помощью вольтметра входное и выходное напряжения и рассчитывая отношение этих напряжений на разных частотах. По значению модуля комплексного коэффициента передачи можно судить о подавлении или пропускании сигнала. Если , то выходное напряжение примерно равно входному напряжению и, следовательно, сигнал с частотой
пропускается фильтром. Наоборот, при малых значениях АЧХ когда , получим подавление сигнала с частотой .

Типовые амплитудно-частотные характеристики реальных ФНЧ, ФВЧ, ПФ и ЗФ приведены на рис. 8.17. На этом рисунке для ФНЧ и ФВЧ показана граничная частота , на которой значение Ачк равно раз. Как правило, граничную частоту считают границей полосы пропускания фильтра. Для ПФ и ЗФ показаны: ˗ центральные резонансные частоты полосы пропускания и полосы задерживания; П ˗ полосы пропускания и задерживания соответственно. Отметим, что на практике кроме уровня, равного 0,707 , используют другие уровни для определения граничных частот, полос пропускания и задерживания. Кроме того, иногда вводятся дополнительные граничные частоты. Например, дополнительная частота показана на рис. 8.17а. Частота в этом случае определяет границу полосы задерживания фильтра.

Избирательные свойства фильтра тем лучше, чем ближе форма АЧХ к прямоугольной. Поэтому вторая АЧХ, показанная на рис. 8.17б, принадлежит фильтру, изготовленному с лучшим качеством.

Кроме АЧХ для описания фильтра используют фазочастотную характеристику (ФЧХ). ФЧХ определяется как начальная фаза (аргумент) комплексного коэффициента передачи фильтра: , где и – начальные фазы выходного и входного сигналов соответственно. Из формулы следует, что ФЧХ определяет фазовый сдвиг, добавляемый фильтром к начальной фазе входного сигнала. Как правило, фазочастотную характеристику фильтра требуется знать при использовании систем связи с так называемой угловой модуляцией, когда информация содержится в изменениях частоты и фазы сигнала.






Рис. 8.17. Амплитудно-частотные характеристики фильтров

Продолжим классификацию фильтров. По способу изготовления различают следующие типы фильтров: кварцевые, электромеханические, фильтры на коаксиальных линиях передачи, фильтры на поверхностных акустических волнах, фильтры на переключаемых конденсаторах, активные фильтры, на операционных усилителях, LC-фильтры - фильтры, содержащие катушки индуктивности и конденсаторы (отметим, что в схемы LC-фильтров часто дополнительно включаются резисторы) и т. д.

Как правило, для упрощения теоретического анализа все разновидности используемых на практике фильтров сводят к LC - фильтрам. При этом конструктивные элементы реальных фильтров замешают их электрическими аналогами в виде катушек, конденсаторов и резисторов. Ниже рассмотрение фильтров будет ограничено анализом только LC-фильтров.

Для построения LC-фильтров применяют Г-, П- и Т-образные звенья, показанные на рис. 8.18. В этих схемах используются одинаковые сопротивления Z1 и Z2. Поэтому все три фильтра будут иметь примерно одинаковые полосы пропускания.



Рис. 8.18. Конструкция фильтров

Фильтры, состоящие из нескольких каскадно-включенных цепей, изображенных на рис. 8.18, называются многозвенными. Например, П- или Т-звено можно получить каскадным соединением двух Г-звеньев.

Простейшие схемы однозвенных ФНЧ Г-типа, широко используемых на практике, приведены на рис. 8.19. Избирательные свойства этих фильтров объясняются свойствами катушки и конденсатора. Как известно, индуктивное сопротивление катушки увеличивается с ростом частоты, а емкостное сопротивление конденсатора, наоборот, с ростом частоты уменьшается.



Рис. 8.19. Схемы однозвенных фильтров

Например, работа фильтра, изображенного на рис. 8.18, а, описывается следующим образом. При увеличении частоты входного сигнала сопротивление конденсатора уменьшается:
. Выходное напряжение на конденсаторе и, следовательно, высокочастотный сигнал через фильтр не проходит (подавляется). Если , то
и . Следовательно, низкочастотный сигнал проходит через фильтр с малым затуханием. АЧХ фильтра низких частот приведена на рис. 8.17, а. Аналогично объясняется работа других фильтров. Отметим, что лучшую избирательность будет давать схема, приведенная на рис. 8.19в, так как в этой схеме используются частотные свойства не одного, а двух реактивных элементов.



Рис. 8.20. Схемы ФНЧ на основе П- и Т-звеньев

Дальнейшее улучшение прямоугольности частотных характеристик ФНЧ получим при использовании П- и Т-звеньев (рис. 8.20) и при соединении нескольких звеньев в цепочку.

Часто используемые на практике простейшие схемы однозвенных ФВЧ приведены на рис. 8.21. Работа этих фильтров также объясняется частотными свойствами катушки и конденсатора. Как и для ФНЧ, использование П- и Т-звеньев улучшает прямоугольность амплитудно-частотных характеристик фильтров.



Рис. 8.21. Схемы однозвенных ФВЧ

8.2.3. Нелинейный элемент и воздействие на него одного сигнала.


Нелинейным элементом называют элемент, параметры которого зависят от протекающего через него тока или от приложенного к нему напряжения. Типичными нелинейными элементами являются диод и транзистор. Их параметры существенно изменяются при воздействии рабочих токов и напряжений.

Ранее рассматривались линейные элементы, параметры которых не зависят от протекающего тока и приложенного напряжения. Например, в рабочем диапазоне напряжений и токов такие радиоэлементы, как резисторы и конденсаторы, считаются линейными элементами. На рис. 8.22 приведены вольт-амперные характеристики (ВАХ) нелинейного (1) и линейного (2) резисторов.