Файл: Общая микробиология.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 03.02.2024

Просмотров: 337

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Раздел 1.Общая микробиология.

2. Начальный период развития микробиологии (А. Левенгук идр.).

3.Работы Л. Пастера и Р. Коха. Их значение в становлении и развитии микробиологии.

5.Морфология бактерий. Основные формы, постоянные и непостоянные структуры бактериальнойклетки.

7.Различия вструктуре грамположительных и грамотрицательных бактерий. Протопласты, сферопласты и L-формы бактерий.

Свойства протопластов и сферопластов:

Свойства L-форм:

8.Особенности строения актиномицетов. Общие признаки с бактериями и грибами. Патогенные представители.

9.Особенности строения спирохет, их классификация. Общие признаки с бактериями и простейшими. Патогенныепредставители.

10.Особенности строения риккетсий. Общие признаки с бактериями и вирусами, патогенныепредставители.

11.Особенности строения хламидий. Общие признаки с бактериями и вирусами, патогенныепредставители.

12.Морфология и структура микоплазм, патогенныепредставители.

Микоплазмы относятся к клас­су Mollicutes,который включает 3 порядка: Acholeplasmatales, Mycoplasmatales, Anaeroplasmatales.

13.Морфология простейших, их классификация. Патогенныепредставители.

14.Питание бактерий. Механизмы транспорта питательных веществ в бактериальнуюклетку.

Механизмы транспорта

15. Классификация бактерий по типам питания (аутотрофы, гетеротрофы, сапрофиты, облигатные и факультативные паразиты) и источникам энергии (фототрофы и хемотрофы). Примеры.

16.Факторы роста. Ауксотрофы и прототрофы.

18.Методы изучения ферментативной активности бактерий и использование ее для идентификациибактерий.

19.Пигменты бактерий, классификация по растворимости в воде. Примеры, их значение.

Значение пигментов:

20.Основные типы биологического окисления субстрата бактериями. Аэробы, факультативные анаэробы, микроаэрофилы, анаэробы.Примеры.

39. Типы взаимодействия фагов с бактериальной клеткой. Вирулентные и умеренные фаги. Профаги. Лизогения. Фаговая конверсия. Дефектные фаги.

Раздел 2. Основы генетики микроорганизмов.

Мутации у бактерий. Классификация по происхождению и характеру изменений в первичной структуреДНК.

В пределах одного репликона сайт-специфическая рекомбинация участвует также в переключении активности генов.

Рекомбинация у бактерий является конечным этапом передачи генетического материала между бактериями, которая осуществляется тремя механизмами: конъюгацией, трансдукцией и трансформацией.

В обмене генетической информацией трансорфмация играет незначительную роль.

Протекает в 3 стадии:

1. адсорбция двуцепочечной ДНК на участках клеточной стенки компетентных клеток

2. ферментативное расщепление связавшейся ДНК в некоторых случайно расположенных местах с образованием фрагментов 4-5*106D

Трансдукция – перенос бактериофагом в заражаемую клетку фрагментов генетического материала клетки, исходно содержавшей бактериофаг.

Типы трансдукции:

Свойства трансдуцирующих фаговых частиц:

1.Частицы несут часть ДНК фага, то есть не являются функциональными вирусами

2. Подобно прочим дефектным вирусам, частицы не способны к репликации.

3. Трансдуцирующие фаги могут содержать какую-либо часть хромосомы хозяина с генами, дающими реципиентной бактерии некоторые преимущества

4. Феномен трансдукции может быть использован для картирования бактериальной хромосомы, если следовать тем же принципам, что и при картировании с использованием феномена трасформации

Плазмиды могут раостраняться по вертикали (при клеточном делении) и по горизонтали, прежде всего путем конъюгационного переноса.

Существуют плазмиды:

Автономные – существуют в цитоплазме бактерий, способны самостоятельно репродуцироваться, в клетке может присутствовать несколько их копий.

Функции плазмид:

1. регуляция метаболизма бактериальной клетки посредством встраивания в поврежденный геном и восстановления его функций

2. кодирующие – появление новой генетической информации и проявление новых свойств:

- устойчивость к антибиотикам

- продукцию факторов патогенности

- способность к синтезу антибиотических веществ

- образование колицинов

- расщеплене сложных органических веществ

- образование ферментов рестрикции и модификации

Группы плазмид и их характеристика:

R- плазмиды – кодируют устойчивость к лекарственным препаратам и к тяжелым металлам.

Плазмиды бактериоциногении – кодируют синтез бактериоцинов – белковых продуктов, вызывающих гибель бактерий того же или близких видов. Часто выявлят у грамотрицательных палочек.

Плазмиды патогенности – контролируют вирулентные свойства многих видов, особенно энтеробактерий.

По типу передачи:

Неконъюгативные (нетрансмиссивные) -несодержат области tra-генов, не способны к самостоятельной передаче генетического материала в другие бактериальные клетки.

Механизм превращения R+-клетками антибиотиков в неактивную форму связан с действием на них специфических ферментов, кодируемых R-плазмидой.

С действием R-плазмид часто бывает связан тот факт, что некоторые бактериальные заболевания с трудом поддаются лечению при помощи известных на данный момент антибиотиков.

Раздел 3. Микрофлора организма человека, объектов внешней среды.

Микрофлора человека, классификация (аутохтонная, аллохтонная и заносная). Факторы, определяющие количественный и качественный составмикрофлоры.

55.Микрофлора мочевыделительного тракта. Категории чистотывлагалища.

56.Микрофлора кишечника. Факторы, оказывающие губительные действия на микрофлору тонкого кишечника. Мукозная и просветнаямикрофлора.

58. Эубиотики. Природа, механизм действия. Бактериоцины. Практическое использование эубиотиков.

Действие на микроорганизмы химических веществ. Дезинфекция. Механизмы действия дезинфицирующихвеществ.

61 Распространение микроорганизмов в окружающей среде. Понятие о микробных биоценозах. Типы взаимодействия между микробами в биоценозе Действие на микроорганизмы биологических факторов.

62. Симбиотические взаимоотношения (метабиоз, комменсализм, мутуализм, сателлитизм, синергизм). Примеры. Антагонистические взаимоотношения (антибиоз, конкуренция, хищничество, паразитизм).Примеры.

63. Антибиотики. Способы получения.Классификация по происхождению,спектру действия.Примеры.

64. Антибиотики. Классификация по механизму действия. Примеры.

66 Механизмы лекарственной устойчивости бактерий (первичные, приобретенные, хромосомные, внехромосомные),г-гены.

77. Источники и пути передачи инфекционныхболезней.

78. Динамика и периоды развития инфекционного заболевания. Исход инфекционного заболевания.

84.Биологический метод микробиологической диагностики, назначение и принцип метода.

95. Возбудитель скарлатины. Таксономия. Свойства. Иммунитет, определение его напряжённости. Принципы и методы лабораторной диагностики.

96.. Пневмококки, таксономия. Свойства. Серологические группы. Вызываемые заболевания. Принципы и методы лабораторной диагностики.

102. Синегнойная палочка. Таксономия. Свойства. Вызываемые заболевания. Роль во внутрибольничных инфекциях. Принципы и методы лабораторнойдиагностики.

112. Кампилобактерии. Таксономия. Морфология. Культуральные особенности. Вызываемые заболевания. Эпидемиология. Принципы лабораторнойдиагностики.

Имеют О- и Н-антигены, по которым под разделяются на 60 сероваров. Обладают плазмидами, с которыми связана антибиотикоустойчивость.

Факторыпатогенности. Эндотоксин, связанный с ЛПС, а также продукция некоторыми штаммами холероподобного энтеротоксина и цитотоксина.

Резистентность. Невысокая. Чувствительны к факторам внешней среды, физическим и химическим факторам, в том числе к нагреванию и дезинфектантам. Устойчивы к целомуряду

антибиотиков, но чувствительны к эритромицину и ципрофлоксацину.

Эпидемиология.Зооантропоноз.Важнейший источник инфекции — сельскохозяйственные животные и

Специфическая профилактика. Не разработана. Проводятся противоэпидемические мероприятия как при сальмонеллезах.

Возбудители эпидемического и эндемического возвратных тифов. Таксономия. Свойства. Дифференциация. Эпидемиология. Патогенез. Принципы и методы лабораторной диагностики с учетом периодазаболевания.

124.Возбудители болезни Лайма. Принципы и методы лабораторной диагностики.

125.Возбудитель лептоспироза. Таксономия. Свойства. Культуральные особенности. Принципы и методы лабораторной диагностики, препараты специфической профилактики и лечения.

Хламидии. Таксономия, свойства, вызываемые заболевания. Роль хламидий в патологии беременности и поражения плода. Патогенез, иммунитет. Принципы и методы лабораторнойдиагностики.

Парамиксовирусы. Вирусы парагриппа человека 1-5 типы. Характеристика, вызываемые ими заболевания. Эпидемиология. Принципы и методы лабораторной диагностики.

Морфология и физиология.

Тогавирусы. Вирус краснухи. Свойства. Эпидемиология. Патогенез, последствия для беременных. Принципы и методы лабораторной диагностики. Специфическая профилактика.

136. Буньявирус. Вирус ГЛПС. Характеристика. Эпидемиология, патогенез, иммунитет. Осложнения. Принципы и методы микробиологической диагностики.

139. Пикорнавирусы. Вирусы Коксаки и ЕСНО. Характеристика. антигенная структура. Серотипы. Вызываемые ими инфекции, клинические проявления. Эпидемиология. Принципы и методы лабораторнойдиагностики.

 140. Пикорнавирусы. Вирус гепатита А, характеристика. Эпидемиология, патогенез. Принципы и методы лабораторной диагностики. Специфические маркеры вируса. Специфическая профилактика.

Особенности иммунитета:

Антитела вырабатываются на антиген НВs суперкапсида. Имеются антитела к -антигену, но они неэффективны, так как вирус покрыт суперкапсидом.

Специального лечения нет.

Специфическая профилактика - такая же как для гепатита В (вакцины против гепатита В)

Диагностика

Материал - кровь

Для диагностики гепатита D применяют:

1) Обнаружение -антигенов

2) Обнаружение антител к -антигену.

Это осуществляется с помощью иммуноферментного и радиоиммунного метода

157.Вирус ветреной оспы и опоясывющего лишая. Таксономия. Характеристика. Эпидемиология. Особенности иммунитета. Принципы и методы лабораторной диагностики. Специфическая профилактика.

158.Поксвирус. Вирус натуральной оспы. Свойства. Тельца Гварниери. Эпидемиология. Патогенез. Принципы лабораторной диагностики. Специфическая профилактика.

160.Онкогенные вирусы; классификация и характеристика.


Хищничество – это внеклеточный паразитизм. Хищные бактерии образуют подвижную колонию – сетку, улавливающую крупные бактериальные клетки других видов, которые лизируются (разрушаются) и используются ими внутри колонии, а остатки выбрасываются. Хищные бактерии обитают в илах водоемов.
Конкуренция наблюдается тогда, когда совместно развивающиеся организмы нуждаются в одних и тех же питательных веществах и условиях развития.


63. Антибиотики. Способы получения.Классификация по происхождению,спектру действия.Примеры.



Антибиотики — химиотерапевтические вещества, продуцируемые микроорганизмами, животными клетками, растениями, а также их производные и синтетические продукты, которые обладают избирательной способностью угнетать и задерживать рост микроорганизмов, а также подавлять развитие злокачественных новообразований.
Источники антибиотиков.

Основными продуцентами природных антибиотиков являются микроорганизмы, которые, находясь в своей естественной среде (в основном, в почве), синтезируют антибиотики в качестве средства выживания в борьбе за существование. Животные и растительные клетки также могут вырабатывать некоторые вещества с селективным антимикробным действием (например, фитонциды), однако широкого применения в медицине в качестве продуцентов антибиотиков они не получили.
Таким образом, основными источниками получения природных и полусинтетических антибиотиков стали:

  • Актиномицеты(особенно стрептомицеты) — ветвящиеся

бактерии. Они синтезируют большинство природных антибиотиков (80%).

  • Плесневые грибы — синтезируют природные бета-лактамы (грибы рода Cephalosporium и Penicillium) и фузидиевую кислоту.

  • Типичные бактерии — например, эубактерии, бациллы, псевдомонады — продуцируют бацитрацин, полимиксины и другие вещества, обладающие антибактериальным действием.

Способы получения.

Существует три основных способа получения антибиотиков:

  • биологический синтез (так получают природные антибиотики — натуральные продукты ферментации, когда в оптимальных условиях культивируют микробы-продуценты, которые выделяют антибиотики в процессе своейжизнедеятельности);

  • биосинтез с последующими химическими модификациями (так создают полусинтетические антибиотики). Сначала путем биосинтеза получают природный антибиотик, а затем его первоначальную молекулу видоизменяют путем химических модификаций, например, присоединяют определенные радикалы, в результате чего улучшаются противомикробные и фармакологические характеристики препарата;

  • химический синтез (так получают синтетические аналоги природных антибиотиков, например хлорамфеникол/левомицетин). Это вещества, которые имеют такую же структуру,



По спектру действия антибиотики делят на пять групп в зависимости от того, на какие микроорганизмы они оказывают воздействие. Кроме того, существуют противоопухолевые антибиотики, продуцентами которых также являются актиномицеты. Каждая из этих групп включает две подгруппы: антибиотики широкого и узкого спектра действия.
Антибактериальные антибиотики составляют самую многочисленную группу препаратов. Преобладают в ней антибиотики широкого спектра действия, оказывающие влияние на представителей всех трех отделов бактерий. К антибиотикам широкого спектра действия относятся аминогликозиды, тетрациклины и др. Антибиотики узкого спектра действия эффективны в отношении небольшого круга бактерий, например полимиксины действуют на грациликутные, ванкомицин влияет на грамположительныебактерии.
В отдельные группы выделяют противотуберкулезные, противолепрозные, противосифилитические препараты.
Противогрибковые антибиотики включают значительно меньшее число препаратов. Широким спектром действия обладает, например, амфотерицин В, эффективный при кандидозах, бластомикозах, аспергиллезах; в то же время нистатин, действующий на грибы рода Candida, является антибиотиком узкого спектра действия.
Антипротозойные и антивирусные антибиотики насчитывают небольшое число препаратов.
Противоопухолевые антибиотики представлены препаратами, обладающими цитотоксическим действием. Большинство из них применяют при многих видах опухолей, например митомицин С.
Действие антибиотиков на микроорганизмы связано с их способностью подавлять те или иные биохимические реакции, происходящие в микробной клетке.
По происхождению антибиотики подразделяют на шесть групп:

  1. Антибиотики, образуемые грибами и лишайниками. К этой группе относят пенициллин, гризеофульвин, цефалоспорин, усниноваякислота.

  2. Антибиотики, продуцируемые актиномицетами. К этой группе относят стрептомицин, неомицин, канамицин, хлортетрациклин, хлорамфеникол, эритромицин, тилозин,нистатин.

  3. Антибиотики, продуцируемые бактериями. Эта группа менее обширна, чем группа антибиотиков грибного и актиномицетного происхождения. Способностью продуцировать антибиотики обладают в большинстве своем сапрофитные бактерии, обитающие в почве. К этой группе относят колицин, грамицидин, пиоционин, субтилин, полимиксин. Некоторые из этих антибиотиков токсичны при парэнтеральном введении и применяютсяместно.

  4. Антибиотики животного происхождения. К этой группе относят вещества, образуемые тканями животных: эритрин, выделяемый из эритроцитов некоторых животных; экмолин, полученный из тканей рыб; лизоцим,интерферон.

  5. Антибиотики растительного происхождения. Многие растения способны синтезировать летучие и нелетучие вещества, обладающие бактерицидным и бактериостатическим действием на микроорганизмы. Такие соединения называют фитонцидами. Фитонциды призваны обеспечить защиту растений от возбудителей различных заболеваний. Некоторые фитонциды выделены в чистом виде. Например, аллицин – из чеснока, рафанин – из семян редиса, иманин – из зверобоя.

  6. Синтетические антибиотики, полученные искусственно путембиосинтеза.



64. Антибиотики. Классификация по механизму действия. Примеры.



По механизму действия выделяют четыре основные группы антибиотиков:

  1. Антибиотики, ингибирующие синтез пептидогликана клеточной стенки (пенициллины,цефалоспорины).
    Синтез предшественников пептидогликана начинается в цитоплазме. Затем он транспортируются через ЦПМ, где происходии их объединение в гликопептидные цепи (эту стадию ингибируют гликопептид путем связывани с D-аланином). Образование полноценного пептидогликана происходит на внешней поверхности ЦПМ. Этап сшивки происходит благодаря пенициллинсвязывающим белкам (ПСБ). Именно их ингибиурют антибиотики данной группы. Ингибирование ПСБ приводит к накоплению в бактериальной клетке предшественников пептидогликана и запуску системы аутолиза. В результате действия аутолитическихи ферментов и увеличения осмотического давления цитоплазмы происходит лизиз бактериальной клетки.

  2. Антибиотики, нарушающие функцию цитоплазматической мембраны (грамицидин,полиены).
    Полимиксин лизирую клетки, поврежда фосфолипид клеточны мембран. Из-з токсичност и применяю лиш дл лечени местны процессо и н вводя парентерально. В настоя ще врем н практик н используют. Противогрибковы препарат(антимикотики) повреждаю эрго сгерол ЦП грибо (полиеновы антибиотики) и ингибирую оди ключевы ферменто биосинтез эргостероло (имидазолы).

  3. Антибиотики, разрушающие рибосомальные субчастицы и сдерживающие синтез белка (тетрациклины, амино-гликозиды, макролиды).
    Аминогликозиды, тетрациклин и оксазолидиноны связываются с ЗОS-субъединицей, блокируя процесс еще до начала синтеза белка. Аминогликозиды необратимо связываются с 30S-субъединицей рибосом и нарушают присоединение к рибосоме тРНК, происходит образование дефектных инициальных комплексов. Тетрациклины обратимо связываются с 30S-субъединицей рибосом и препятствуют присоединению нового аминоацила тРНК к акцепторному сайту и перемещению тРНК с акцепторного на донорский сайт. Оксазолидиноны блокируют связывание двух субъединиц рибосом в единый 7OS-комплекс, нарушают терминацию и высвобождение пептидной цепи.
    Макролиды, хлорамфеникол, линкозамиды и стрентограмины соединяются с 50S-субъединицей и ингибируют процесс элонгации полипептидных цепей при синтезе белка. Хлорамфеникол и линкозамиды нарушают формирование пептида, катализируемого пептидилтрансферазой, макролиды ингибируют транслокацию пептидил тРНК. Однако эффект этих препаратов бактериостатичен. Стрепторамины, хинупристин/дальфопристин ингибируют синтез белкав синергичной манере, оказывая бактерицидное действие

  4. Антибиотики, избирательно подавляющие синтез нуклеиновых кислот (гризеофульвин, неомицин,новобиоцин).
    Есть 3 механизма: 1) ингибирование синтеза предшественников пуринпиримидиновых оснований (сульфаниламиды, триметоприм), 2)подавление репликации и функции ДНК (хиноло ны/фторхинолоны, нитроимидазолы, нитрофураны) и 3) ингибирование РНК-полимераз (рифамицины). В большинстве своем в эти группы входят синтетическиепрепараты, из антибиотиков подобным механизмом действия обладают только рифамицины, которые присоединяются к РНК-полимераз и блокируют синтез мРНК.