ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 03.02.2024
Просмотров: 337
Скачиваний: 0
СОДЕРЖАНИЕ
2. Начальный период развития микробиологии (А. Левенгук идр.).
3.Работы Л. Пастера и Р. Коха. Их значение в становлении и развитии микробиологии.
5.Морфология бактерий. Основные формы, постоянные и непостоянные структуры бактериальнойклетки.
Свойства протопластов и сферопластов:
10.Особенности строения риккетсий. Общие признаки с бактериями и вирусами, патогенныепредставители.
11.Особенности строения хламидий. Общие признаки с бактериями и вирусами, патогенныепредставители.
12.Морфология и структура микоплазм, патогенныепредставители.
13.Морфология простейших, их классификация. Патогенныепредставители.
14.Питание бактерий. Механизмы транспорта питательных веществ в бактериальнуюклетку.
16.Факторы роста. Ауксотрофы и прототрофы.
18.Методы изучения ферментативной активности бактерий и использование ее для идентификациибактерий.
19.Пигменты бактерий, классификация по растворимости в воде. Примеры, их значение.
Раздел 2. Основы генетики микроорганизмов.
Мутации у бактерий. Классификация по происхождению и характеру изменений в первичной структуреДНК.
В обмене генетической информацией трансорфмация играет незначительную роль.
1. адсорбция двуцепочечной ДНК на участках клеточной стенки компетентных клеток
Свойства трансдуцирующих фаговых частиц:
1.Частицы несут часть ДНК фага, то есть не являются функциональными вирусами
2. Подобно прочим дефектным вирусам, частицы не способны к репликации.
2. кодирующие – появление новой генетической информации и проявление новых свойств:
- продукцию факторов патогенности
- способность к синтезу антибиотических веществ
- расщеплене сложных органических веществ
- образование ферментов рестрикции и модификации
Группы плазмид и их характеристика:
R- плазмиды – кодируют устойчивость к лекарственным препаратам и к тяжелым металлам.
Плазмиды патогенности – контролируют вирулентные свойства многих видов, особенно энтеробактерий.
Раздел 3. Микрофлора организма человека, объектов внешней среды.
55.Микрофлора мочевыделительного тракта. Категории чистотывлагалища.
58. Эубиотики. Природа, механизм действия. Бактериоцины. Практическое использование эубиотиков.
63. Антибиотики. Способы получения.Классификация по происхождению,спектру действия.Примеры.
64. Антибиотики. Классификация по механизму действия. Примеры.
77. Источники и пути передачи инфекционныхболезней.
78. Динамика и периоды развития инфекционного заболевания. Исход инфекционного заболевания.
84.Биологический метод микробиологической диагностики, назначение и принцип метода.
антибиотиков, но чувствительны к эритромицину и ципрофлоксацину.
Эпидемиология.Зооантропоноз.Важнейший источник инфекции — сельскохозяйственные животные и
124.Возбудители болезни Лайма. Принципы и методы лабораторной диагностики.
Специфическая профилактика - такая же как для гепатита В (вакцины против гепатита В)
Для диагностики гепатита D применяют:
2) Обнаружение антител к -антигену.
Это осуществляется с помощью иммуноферментного и радиоиммунного метода
Хищничество – это внеклеточный паразитизм. Хищные бактерии образуют подвижную колонию – сетку, улавливающую крупные бактериальные клетки других видов, которые лизируются (разрушаются) и используются ими внутри колонии, а остатки выбрасываются. Хищные бактерии обитают в илах водоемов.
Конкуренция наблюдается тогда, когда совместно развивающиеся организмы нуждаются в одних и тех же питательных веществах и условиях развития.
63. Антибиотики. Способы получения.Классификация по происхождению,спектру действия.Примеры.
Антибиотики — химиотерапевтические вещества, продуцируемые микроорганизмами, животными клетками, растениями, а также их производные и синтетические продукты, которые обладают избирательной способностью угнетать и задерживать рост микроорганизмов, а также подавлять развитие злокачественных новообразований.
Источники антибиотиков.
Основными продуцентами природных антибиотиков являются микроорганизмы, которые, находясь в своей естественной среде (в основном, в почве), синтезируют антибиотики в качестве средства выживания в борьбе за существование. Животные и растительные клетки также могут вырабатывать некоторые вещества с селективным антимикробным действием (например, фитонциды), однако широкого применения в медицине в качестве продуцентов антибиотиков они не получили.
Таким образом, основными источниками получения природных и полусинтетических антибиотиков стали:
-
Актиномицеты(особенно стрептомицеты) — ветвящиеся
бактерии. Они синтезируют большинство природных антибиотиков (80%).
-
Плесневые грибы — синтезируют природные бета-лактамы (грибы рода Cephalosporium и Penicillium) и фузидиевую кислоту. -
Типичные бактерии — например, эубактерии, бациллы, псевдомонады — продуцируют бацитрацин, полимиксины и другие вещества, обладающие антибактериальным действием.
Способы получения.
Существует три основных способа получения антибиотиков:
-
биологический синтез (так получают природные антибиотики — натуральные продукты ферментации, когда в оптимальных условиях культивируют микробы-продуценты, которые выделяют антибиотики в процессе своейжизнедеятельности); -
биосинтез с последующими химическими модификациями (так создают полусинтетические антибиотики). Сначала путем биосинтеза получают природный антибиотик, а затем его первоначальную молекулу видоизменяют путем химических модификаций, например, присоединяют определенные радикалы, в результате чего улучшаются противомикробные и фармакологические характеристики препарата; -
химический синтез (так получают синтетические аналоги природных антибиотиков, например хлорамфеникол/левомицетин). Это вещества, которые имеют такую же структуру,
По спектру действия антибиотики делят на пять групп в зависимости от того, на какие микроорганизмы они оказывают воздействие. Кроме того, существуют противоопухолевые антибиотики, продуцентами которых также являются актиномицеты. Каждая из этих групп включает две подгруппы: антибиотики широкого и узкого спектра действия.
Антибактериальные антибиотики составляют самую многочисленную группу препаратов. Преобладают в ней антибиотики широкого спектра действия, оказывающие влияние на представителей всех трех отделов бактерий. К антибиотикам широкого спектра действия относятся аминогликозиды, тетрациклины и др. Антибиотики узкого спектра действия эффективны в отношении небольшого круга бактерий, например полимиксины действуют на грациликутные, ванкомицин влияет на грамположительныебактерии.
В отдельные группы выделяют противотуберкулезные, противолепрозные, противосифилитические препараты.
Противогрибковые антибиотики включают значительно меньшее число препаратов. Широким спектром действия обладает, например, амфотерицин В, эффективный при кандидозах, бластомикозах, аспергиллезах; в то же время нистатин, действующий на грибы рода Candida, является антибиотиком узкого спектра действия.
Антипротозойные и антивирусные антибиотики насчитывают небольшое число препаратов.
Противоопухолевые антибиотики представлены препаратами, обладающими цитотоксическим действием. Большинство из них применяют при многих видах опухолей, например митомицин С.
Действие антибиотиков на микроорганизмы связано с их способностью подавлять те или иные биохимические реакции, происходящие в микробной клетке.
По происхождению антибиотики подразделяют на шесть групп:
-
Антибиотики, образуемые грибами и лишайниками. К этой группе относят пенициллин, гризеофульвин, цефалоспорин, усниноваякислота. -
Антибиотики, продуцируемые актиномицетами. К этой группе относят стрептомицин, неомицин, канамицин, хлортетрациклин, хлорамфеникол, эритромицин, тилозин,нистатин. -
Антибиотики, продуцируемые бактериями. Эта группа менее обширна, чем группа антибиотиков грибного и актиномицетного происхождения. Способностью продуцировать антибиотики обладают в большинстве своем сапрофитные бактерии, обитающие в почве. К этой группе относят колицин, грамицидин, пиоционин, субтилин, полимиксин. Некоторые из этих антибиотиков токсичны при парэнтеральном введении и применяютсяместно. -
Антибиотики животного происхождения. К этой группе относят вещества, образуемые тканями животных: эритрин, выделяемый из эритроцитов некоторых животных; экмолин, полученный из тканей рыб; лизоцим,интерферон. -
Антибиотики растительного происхождения. Многие растения способны синтезировать летучие и нелетучие вещества, обладающие бактерицидным и бактериостатическим действием на микроорганизмы. Такие соединения называют фитонцидами. Фитонциды призваны обеспечить защиту растений от возбудителей различных заболеваний. Некоторые фитонциды выделены в чистом виде. Например, аллицин – из чеснока, рафанин – из семян редиса, иманин – из зверобоя. -
Синтетические антибиотики, полученные искусственно путембиосинтеза.
64. Антибиотики. Классификация по механизму действия. Примеры.
По механизму действия выделяют четыре основные группы антибиотиков:
-
Антибиотики, ингибирующие синтез пептидогликана клеточной стенки (пенициллины,цефалоспорины).
Синтез предшественников пептидогликана начинается в цитоплазме. Затем он транспортируются через ЦПМ, где происходии их объединение в гликопептидные цепи (эту стадию ингибируют гликопептид путем связывани с D-аланином). Образование полноценного пептидогликана происходит на внешней поверхности ЦПМ. Этап сшивки происходит благодаря пенициллинсвязывающим белкам (ПСБ). Именно их ингибиурют антибиотики данной группы. Ингибирование ПСБ приводит к накоплению в бактериальной клетке предшественников пептидогликана и запуску системы аутолиза. В результате действия аутолитическихи ферментов и увеличения осмотического давления цитоплазмы происходит лизиз бактериальной клетки. -
Антибиотики, нарушающие функцию цитоплазматической мембраны (грамицидин,полиены).
Полимиксин лизирую клетки, поврежда фосфолипид клеточны мембран. Из-з токсичност и применяю лиш дл лечени местны процессо и н вводя парентерально. В настоя ще врем н практик н используют. Противогрибковы препарат(антимикотики) повреждаю эрго сгерол ЦП грибо (полиеновы антибиотики) и ингибирую оди ключевы ферменто биосинтез эргостероло (имидазолы). -
Антибиотики, разрушающие рибосомальные субчастицы и сдерживающие синтез белка (тетрациклины, амино-гликозиды, макролиды).
Аминогликозиды, тетрациклин и оксазолидиноны связываются с ЗОS-субъединицей, блокируя процесс еще до начала синтеза белка. Аминогликозиды необратимо связываются с 30S-субъединицей рибосом и нарушают присоединение к рибосоме тРНК, происходит образование дефектных инициальных комплексов. Тетрациклины обратимо связываются с 30S-субъединицей рибосом и препятствуют присоединению нового аминоацила тРНК к акцепторному сайту и перемещению тРНК с акцепторного на донорский сайт. Оксазолидиноны блокируют связывание двух субъединиц рибосом в единый 7OS-комплекс, нарушают терминацию и высвобождение пептидной цепи.
Макролиды, хлорамфеникол, линкозамиды и стрентограмины соединяются с 50S-субъединицей и ингибируют процесс элонгации полипептидных цепей при синтезе белка. Хлорамфеникол и линкозамиды нарушают формирование пептида, катализируемого пептидилтрансферазой, макролиды ингибируют транслокацию пептидил тРНК. Однако эффект этих препаратов бактериостатичен. Стрепторамины, хинупристин/дальфопристин ингибируют синтез белкав синергичной манере, оказывая бактерицидное действие -
Антибиотики, избирательно подавляющие синтез нуклеиновых кислот (гризеофульвин, неомицин,новобиоцин).
Есть 3 механизма: 1) ингибирование синтеза предшественников пуринпиримидиновых оснований (сульфаниламиды, триметоприм), 2)подавление репликации и функции ДНК (хиноло ны/фторхинолоны, нитроимидазолы, нитрофураны) и 3) ингибирование РНК-полимераз (рифамицины). В большинстве своем в эти группы входят синтетическиепрепараты, из антибиотиков подобным механизмом действия обладают только рифамицины, которые присоединяются к РНК-полимераз и блокируют синтез мРНК.