Файл: Общая микробиология.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 03.02.2024

Просмотров: 373

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Раздел 1.Общая микробиология.

2. Начальный период развития микробиологии (А. Левенгук идр.).

3.Работы Л. Пастера и Р. Коха. Их значение в становлении и развитии микробиологии.

5.Морфология бактерий. Основные формы, постоянные и непостоянные структуры бактериальнойклетки.

7.Различия вструктуре грамположительных и грамотрицательных бактерий. Протопласты, сферопласты и L-формы бактерий.

Свойства протопластов и сферопластов:

Свойства L-форм:

8.Особенности строения актиномицетов. Общие признаки с бактериями и грибами. Патогенные представители.

9.Особенности строения спирохет, их классификация. Общие признаки с бактериями и простейшими. Патогенныепредставители.

10.Особенности строения риккетсий. Общие признаки с бактериями и вирусами, патогенныепредставители.

11.Особенности строения хламидий. Общие признаки с бактериями и вирусами, патогенныепредставители.

12.Морфология и структура микоплазм, патогенныепредставители.

Микоплазмы относятся к клас­су Mollicutes,который включает 3 порядка: Acholeplasmatales, Mycoplasmatales, Anaeroplasmatales.

13.Морфология простейших, их классификация. Патогенныепредставители.

14.Питание бактерий. Механизмы транспорта питательных веществ в бактериальнуюклетку.

Механизмы транспорта

15. Классификация бактерий по типам питания (аутотрофы, гетеротрофы, сапрофиты, облигатные и факультативные паразиты) и источникам энергии (фототрофы и хемотрофы). Примеры.

16.Факторы роста. Ауксотрофы и прототрофы.

18.Методы изучения ферментативной активности бактерий и использование ее для идентификациибактерий.

19.Пигменты бактерий, классификация по растворимости в воде. Примеры, их значение.

Значение пигментов:

20.Основные типы биологического окисления субстрата бактериями. Аэробы, факультативные анаэробы, микроаэрофилы, анаэробы.Примеры.

39. Типы взаимодействия фагов с бактериальной клеткой. Вирулентные и умеренные фаги. Профаги. Лизогения. Фаговая конверсия. Дефектные фаги.

Раздел 2. Основы генетики микроорганизмов.

Мутации у бактерий. Классификация по происхождению и характеру изменений в первичной структуреДНК.

В пределах одного репликона сайт-специфическая рекомбинация участвует также в переключении активности генов.

Рекомбинация у бактерий является конечным этапом передачи генетического материала между бактериями, которая осуществляется тремя механизмами: конъюгацией, трансдукцией и трансформацией.

В обмене генетической информацией трансорфмация играет незначительную роль.

Протекает в 3 стадии:

1. адсорбция двуцепочечной ДНК на участках клеточной стенки компетентных клеток

2. ферментативное расщепление связавшейся ДНК в некоторых случайно расположенных местах с образованием фрагментов 4-5*106D

Трансдукция – перенос бактериофагом в заражаемую клетку фрагментов генетического материала клетки, исходно содержавшей бактериофаг.

Типы трансдукции:

Свойства трансдуцирующих фаговых частиц:

1.Частицы несут часть ДНК фага, то есть не являются функциональными вирусами

2. Подобно прочим дефектным вирусам, частицы не способны к репликации.

3. Трансдуцирующие фаги могут содержать какую-либо часть хромосомы хозяина с генами, дающими реципиентной бактерии некоторые преимущества

4. Феномен трансдукции может быть использован для картирования бактериальной хромосомы, если следовать тем же принципам, что и при картировании с использованием феномена трасформации

Плазмиды могут раостраняться по вертикали (при клеточном делении) и по горизонтали, прежде всего путем конъюгационного переноса.

Существуют плазмиды:

Автономные – существуют в цитоплазме бактерий, способны самостоятельно репродуцироваться, в клетке может присутствовать несколько их копий.

Функции плазмид:

1. регуляция метаболизма бактериальной клетки посредством встраивания в поврежденный геном и восстановления его функций

2. кодирующие – появление новой генетической информации и проявление новых свойств:

- устойчивость к антибиотикам

- продукцию факторов патогенности

- способность к синтезу антибиотических веществ

- образование колицинов

- расщеплене сложных органических веществ

- образование ферментов рестрикции и модификации

Группы плазмид и их характеристика:

R- плазмиды – кодируют устойчивость к лекарственным препаратам и к тяжелым металлам.

Плазмиды бактериоциногении – кодируют синтез бактериоцинов – белковых продуктов, вызывающих гибель бактерий того же или близких видов. Часто выявлят у грамотрицательных палочек.

Плазмиды патогенности – контролируют вирулентные свойства многих видов, особенно энтеробактерий.

По типу передачи:

Неконъюгативные (нетрансмиссивные) -несодержат области tra-генов, не способны к самостоятельной передаче генетического материала в другие бактериальные клетки.

Механизм превращения R+-клетками антибиотиков в неактивную форму связан с действием на них специфических ферментов, кодируемых R-плазмидой.

С действием R-плазмид часто бывает связан тот факт, что некоторые бактериальные заболевания с трудом поддаются лечению при помощи известных на данный момент антибиотиков.

Раздел 3. Микрофлора организма человека, объектов внешней среды.

Микрофлора человека, классификация (аутохтонная, аллохтонная и заносная). Факторы, определяющие количественный и качественный составмикрофлоры.

55.Микрофлора мочевыделительного тракта. Категории чистотывлагалища.

56.Микрофлора кишечника. Факторы, оказывающие губительные действия на микрофлору тонкого кишечника. Мукозная и просветнаямикрофлора.

58. Эубиотики. Природа, механизм действия. Бактериоцины. Практическое использование эубиотиков.

Действие на микроорганизмы химических веществ. Дезинфекция. Механизмы действия дезинфицирующихвеществ.

61 Распространение микроорганизмов в окружающей среде. Понятие о микробных биоценозах. Типы взаимодействия между микробами в биоценозе Действие на микроорганизмы биологических факторов.

62. Симбиотические взаимоотношения (метабиоз, комменсализм, мутуализм, сателлитизм, синергизм). Примеры. Антагонистические взаимоотношения (антибиоз, конкуренция, хищничество, паразитизм).Примеры.

63. Антибиотики. Способы получения.Классификация по происхождению,спектру действия.Примеры.

64. Антибиотики. Классификация по механизму действия. Примеры.

66 Механизмы лекарственной устойчивости бактерий (первичные, приобретенные, хромосомные, внехромосомные),г-гены.

77. Источники и пути передачи инфекционныхболезней.

78. Динамика и периоды развития инфекционного заболевания. Исход инфекционного заболевания.

84.Биологический метод микробиологической диагностики, назначение и принцип метода.

95. Возбудитель скарлатины. Таксономия. Свойства. Иммунитет, определение его напряжённости. Принципы и методы лабораторной диагностики.

96.. Пневмококки, таксономия. Свойства. Серологические группы. Вызываемые заболевания. Принципы и методы лабораторной диагностики.

102. Синегнойная палочка. Таксономия. Свойства. Вызываемые заболевания. Роль во внутрибольничных инфекциях. Принципы и методы лабораторнойдиагностики.

112. Кампилобактерии. Таксономия. Морфология. Культуральные особенности. Вызываемые заболевания. Эпидемиология. Принципы лабораторнойдиагностики.

Имеют О- и Н-антигены, по которым под разделяются на 60 сероваров. Обладают плазмидами, с которыми связана антибиотикоустойчивость.

Факторыпатогенности. Эндотоксин, связанный с ЛПС, а также продукция некоторыми штаммами холероподобного энтеротоксина и цитотоксина.

Резистентность. Невысокая. Чувствительны к факторам внешней среды, физическим и химическим факторам, в том числе к нагреванию и дезинфектантам. Устойчивы к целомуряду

антибиотиков, но чувствительны к эритромицину и ципрофлоксацину.

Эпидемиология.Зооантропоноз.Важнейший источник инфекции — сельскохозяйственные животные и

Специфическая профилактика. Не разработана. Проводятся противоэпидемические мероприятия как при сальмонеллезах.

Возбудители эпидемического и эндемического возвратных тифов. Таксономия. Свойства. Дифференциация. Эпидемиология. Патогенез. Принципы и методы лабораторной диагностики с учетом периодазаболевания.

124.Возбудители болезни Лайма. Принципы и методы лабораторной диагностики.

125.Возбудитель лептоспироза. Таксономия. Свойства. Культуральные особенности. Принципы и методы лабораторной диагностики, препараты специфической профилактики и лечения.

Хламидии. Таксономия, свойства, вызываемые заболевания. Роль хламидий в патологии беременности и поражения плода. Патогенез, иммунитет. Принципы и методы лабораторнойдиагностики.

Парамиксовирусы. Вирусы парагриппа человека 1-5 типы. Характеристика, вызываемые ими заболевания. Эпидемиология. Принципы и методы лабораторной диагностики.

Морфология и физиология.

Тогавирусы. Вирус краснухи. Свойства. Эпидемиология. Патогенез, последствия для беременных. Принципы и методы лабораторной диагностики. Специфическая профилактика.

136. Буньявирус. Вирус ГЛПС. Характеристика. Эпидемиология, патогенез, иммунитет. Осложнения. Принципы и методы микробиологической диагностики.

139. Пикорнавирусы. Вирусы Коксаки и ЕСНО. Характеристика. антигенная структура. Серотипы. Вызываемые ими инфекции, клинические проявления. Эпидемиология. Принципы и методы лабораторнойдиагностики.

 140. Пикорнавирусы. Вирус гепатита А, характеристика. Эпидемиология, патогенез. Принципы и методы лабораторной диагностики. Специфические маркеры вируса. Специфическая профилактика.

Особенности иммунитета:

Антитела вырабатываются на антиген НВs суперкапсида. Имеются антитела к -антигену, но они неэффективны, так как вирус покрыт суперкапсидом.

Специального лечения нет.

Специфическая профилактика - такая же как для гепатита В (вакцины против гепатита В)

Диагностика

Материал - кровь

Для диагностики гепатита D применяют:

1) Обнаружение -антигенов

2) Обнаружение антител к -антигену.

Это осуществляется с помощью иммуноферментного и радиоиммунного метода

157.Вирус ветреной оспы и опоясывющего лишая. Таксономия. Характеристика. Эпидемиология. Особенности иммунитета. Принципы и методы лабораторной диагностики. Специфическая профилактика.

158.Поксвирус. Вирус натуральной оспы. Свойства. Тельца Гварниери. Эпидемиология. Патогенез. Принципы лабораторной диагностики. Специфическая профилактика.

160.Онкогенные вирусы; классификация и характеристика.



К факторам изменчивости относятся: состав питательной среды, pH окружающей среды, концентрация минеральных солей, температура, улатрафиолетовые лучи, действие фагов, лекарственных и дезинфицирующих препаратов, различные химические соединения, ультразвук, ионизирующая радиация и др.

  1. 1   ...   9   10   11   12   13   14   15   16   ...   55

Мутации у бактерий. Классификация по происхождению и характеру изменений в первичной структуреДНК.



Мутация- изменение первичной структуры ДНК, проявляющееся наследственно закрепленной утратой или изменением какого-либо признака или группы признаков.

По происхождению выделяют мутации: 1) индуцированные, 2) спонтанные
К появлению спонтанных (самопроизвольны) мутаций приводят:

-ошибки репликации

-неправильное формирование комплементарных пар оснований

-структурные искажения ДНК под действием естественных мутагенов
Обратные мутации (реверсии) возвращают спонтанно мутировавшую клетку к исходному генетическому состоянию.
Один из распространенных типов спонтанных мутаций микроорганизмов – ауксотрофность. Это утрата способности к синтезу какого-либо вещества. Например, утрата способности синтезировать какую- либо аминокислоту. В таком случае, ауксотрофные микроорганизмы будут расти на питательных средах, содержащих эту аминокислоту. Спонтанные мутации служат основным источником естественной изменчивости микроорганизмов и лежат в основе эволюции, обусловливая разнообразие генетическогоматериала.
Индуцированные мутации – мутации, которые происходят под влиянием мутагенов.
Подавляющее большинство мутагенов вызывают предмутационные изменения ДНК, которые затем могут превратиться в мутациипри делении клетки или ошибке системы репарации.
Мутагены делятся на следующие группы:

1. химические (аналоги азотистых оснований, алкилирующие агенты, азотиста к-та, интералкилирующие агенты)

2. физические (радиация, температура)

3. биологические (умеренные фаги, плазмиды, транспозоны)
По характеру изменений в структуре ДНК различают мутации:

1. Точечные, когда повреждения ограничиваются одной парой нуклеотидов

2. Аберрации – протяженные мутации:

- делеция – выпадение нескольких пар нуклеотидов

- дупликация – добавление нуклеотидных пар

- транслокация – перемещение фрагментов хромосомы

- инверсия – перестановка нуклеотидных пар
Модификация оснований включает химическое изменение азотистого основания в кодирущей последовательности, что приводит к изменению кодона. В результате вместо одной ак кодируется другая либо возникает бессмысленный кодон.


Вставка либо делеция какого-либо основания в ДНК приводит к фреймшифт-мутациям (мутация со сдвигом рамки считывания), что вызывает изменение позиции рамки считывания триплетного кодона, вследствие, изменене всех последующих кодонов.
Деформация спирали ДНК образуются в результате индуцированной УФ-излучением димеризации расположенных близко нуклеотидов. Разрушается симметрия ДНК и возникает препятствие правильной репликации.

  1. Рекомбинативная изменчивость у бактерий, механизмы генетической передачи информации.


Генетическая рекомбинация – это взаимодейтсвие между двумя ДНК, обладающими различными генотипами, которое приводит к образованию рекомбинантной ДНК, сочетающей гены обоих родителей. В клетку-реципиент проникает не вся, а только часть хромосомы, что приводит к формированию неполной зиготы. По молекулярному механизму делится на:


1) Гомологичная рекомбинация – в процессе разрыва и воссоединения ДНК происходит обмен между участками ДНК, обладающими высокой степенью гомологии. Процесс гомологичной рекомбинации находится под контролем генов, объединенных в REC-систему, состоящую из recA, B, C, D.


2) Сайтспецифическая рекомбинация – не зависит от функционирования генов recA, B, C, D, не требует протяжных участков гомологии ДНК, но для ее протекания необходимы строго определенные последовательности ДНК и специальный ферментатитвный аппарат. (пример: встраивание плазмиды в хромосому бактерий, которое происходит между идентичными IS-элементами хромосомы и лазмиды, интеграция ДНК фага лямбда в хромосому E. Coli.)

В пределах одного репликона сайт-специфическая рекомбинация участвует также в переключении активности генов.


3) Незаконная или репликативная рекомбинация – не зависит от функционирования генов recA, B, C, D. Примером является транспозиция подвижных генетических элементов по репликону.


Рекомбинация у бактерий является конечным этапом передачи генетического материала между бактериями, которая осуществляется тремя механизмами: конъюгацией, трансдукцией и трансформацией.


Трансформация – генетическое изменение клеток в результате включения в их геном экзогенной ДНК. Погибшие бактерии постоянно высвобождают ДНК, которая может быть воспринята другими бактериями.


В обмене генетической информацией трансорфмация играет незначительную роль.


Протекает в 3 стадии:

1. адсорбция двуцепочечной ДНК на участках клеточной стенки компетентных клеток

2. ферментативное расщепление связавшейся ДНК в некоторых случайно расположенных местах с образованием фрагментов 4-5*106D

3. проникновение фрагментов ДНК с молекулярной массой не менее 5*106D, сопровождающееся разрушением одной из цепей ДНК; проникшая цепь ДНК рекомбинирует с генетическим материалом реципиентной клетки


Конъюгация – прямой перенос фрагмента ДНК от донорских бактериальных клеток к реципиентным при непосредственном контакте этих клеток. Однажды изменившись, генетическая информация может быстро распространяттся среди сходных бактерий благодаря конъюгации. Для реализации процесса необходим F-фактор – плазмида, содержит гены специальных и необходимых при конъюгации структур – F-пилей и др.


Конъюгация требует наличиедвух типов клеток: доноров (F+), обладающих F-фактором, и реципиентов (F-), не обладающих им.


Механизм передачи плазмидной ДНК из клетки в клетку заключается в том, что специальный белок узнает определенную последовательность в ДНК плазмиды, вносит в эту последовательность одноцепочечный разрыв и ковалентно связывается с 5’-концом. Затем цепь ДНК, с которой связан белок, переносится в клетку-реципиент, а неразорванная комплементарная цепь остаеся в клетке-доноре. Клеточный аппарат синтеза ДНК достраивает одиночные цепи и в доноре, и в реципиенте до двухцепочечной структуры. Белок, связанный с 5’-концом перенесенной цепи, способствует замыканию плазмиды в реципиентной клетке в кольцо.


Трансдукция – перенос бактериофагом в заражаемую клетку фрагментов генетического материала клетки, исходно содержавшей бактериофаг.


Типы трансдукции:

    • Неспецифическая (общая) – фагом переносится любой фрагмент ДНК хозяина

    • Специфическая – фагом переносятся строго определенные фрагменты ДНК

    • Абортивная – внесенный фрагмент ДНК донора не встраивается в генефор реципиента, а остается в цитоплазме, где его ДНК транскрибируется, но не реплицируется.


Свойства трансдуцирующих фаговых частиц:

1.Частицы несут часть ДНК фага, то есть не являются функциональными вирусами

2. Подобно прочим дефектным вирусам, частицы не способны к репликации.

3. Трансдуцирующие фаги могут содержать какую-либо часть хромосомы хозяина с генами, дающими реципиентной бактерии некоторые преимущества

4. Феномен трансдукции может быть использован для картирования бактериальной хромосомы, если следовать тем же принципам, что и при картировании с использованием феномена трасформации








  1. Плазмиды бактерий: классификация, функции, пути передачи. Механизм множественной лекарственной устойчивости.


Плазмиды – двухцепочечные фрагменты ДНК с молекулярной массой поряжка 106-108 D, несущие от 40 до 50 генов. Они кодируют не основные для жизнедеятельности бактериальной клетки функции, но придающие бактерии преимущества при попадании в неблагоприятные ситуации.

Плазмиды могут раостраняться по вертикали (при клеточном делении) и по горизонтали, прежде всего путем конъюгационного переноса.


Существуют плазмиды: