ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 03.02.2024
Просмотров: 393
Скачиваний: 0
СОДЕРЖАНИЕ
2. Начальный период развития микробиологии (А. Левенгук идр.).
3.Работы Л. Пастера и Р. Коха. Их значение в становлении и развитии микробиологии.
5.Морфология бактерий. Основные формы, постоянные и непостоянные структуры бактериальнойклетки.
Свойства протопластов и сферопластов:
10.Особенности строения риккетсий. Общие признаки с бактериями и вирусами, патогенныепредставители.
11.Особенности строения хламидий. Общие признаки с бактериями и вирусами, патогенныепредставители.
12.Морфология и структура микоплазм, патогенныепредставители.
13.Морфология простейших, их классификация. Патогенныепредставители.
14.Питание бактерий. Механизмы транспорта питательных веществ в бактериальнуюклетку.
16.Факторы роста. Ауксотрофы и прототрофы.
18.Методы изучения ферментативной активности бактерий и использование ее для идентификациибактерий.
19.Пигменты бактерий, классификация по растворимости в воде. Примеры, их значение.
Раздел 2. Основы генетики микроорганизмов.
Мутации у бактерий. Классификация по происхождению и характеру изменений в первичной структуреДНК.
В обмене генетической информацией трансорфмация играет незначительную роль.
1. адсорбция двуцепочечной ДНК на участках клеточной стенки компетентных клеток
Свойства трансдуцирующих фаговых частиц:
1.Частицы несут часть ДНК фага, то есть не являются функциональными вирусами
2. Подобно прочим дефектным вирусам, частицы не способны к репликации.
2. кодирующие – появление новой генетической информации и проявление новых свойств:
- продукцию факторов патогенности
- способность к синтезу антибиотических веществ
- расщеплене сложных органических веществ
- образование ферментов рестрикции и модификации
Группы плазмид и их характеристика:
R- плазмиды – кодируют устойчивость к лекарственным препаратам и к тяжелым металлам.
Плазмиды патогенности – контролируют вирулентные свойства многих видов, особенно энтеробактерий.
Раздел 3. Микрофлора организма человека, объектов внешней среды.
55.Микрофлора мочевыделительного тракта. Категории чистотывлагалища.
58. Эубиотики. Природа, механизм действия. Бактериоцины. Практическое использование эубиотиков.
63. Антибиотики. Способы получения.Классификация по происхождению,спектру действия.Примеры.
64. Антибиотики. Классификация по механизму действия. Примеры.
77. Источники и пути передачи инфекционныхболезней.
78. Динамика и периоды развития инфекционного заболевания. Исход инфекционного заболевания.
84.Биологический метод микробиологической диагностики, назначение и принцип метода.
антибиотиков, но чувствительны к эритромицину и ципрофлоксацину.
Эпидемиология.Зооантропоноз.Важнейший источник инфекции — сельскохозяйственные животные и
124.Возбудители болезни Лайма. Принципы и методы лабораторной диагностики.
Специфическая профилактика - такая же как для гепатита В (вакцины против гепатита В)
Для диагностики гепатита D применяют:
2) Обнаружение антител к -антигену.
Это осуществляется с помощью иммуноферментного и радиоиммунного метода
Репродукция состоит из таких стадий: адсорбция вируса на клетке; проникновение вируса в клетку; «раздевание» вируса; биосинтез вирусных компонентов в клетке; формирование вирусов;выход вирусов из клетки.
Адсорбция. Это прикрепление вирусов к поверхности клетки. Это высокоспецифический процесс. Вирус адсорбируется на рецепторах.
Проникновение в клетку. Существует два способа проникновения вирусов животных в клетку: виропексис и слияние вирусной оболочки с клеточной мембраной. При виропексисе происходит впячивание клеточной мембраны и образование вакуоли, которая содержит вирусную частицу. Вакуоль может транспортироваться в любом направлении в разные участки цитоплазмы или ядро клетки. Процесс слияния осуществляется одним из поверхностных вирусных белков капсидной или суперкапсидной оболочки.
«Раздевание». Удаление защитных вирусных оболочек и освобождение внутреннего компонента вируса. Конечными продуктами «раздевания» являются сердцевина, нуклеокапсид или нуклеиновая кислота вируса.
Биосинтез компонентов вируса. Проникшая в клетку вирусная нуклеиновая кислота несет генетическую информацию, которая конкурирует с генетической информацией клетки. Она дезорганизует работу клеточных систем, подавляет собственный метаболизм клетки и заставляет ее синтезировать новые вирусные белки и нуклеиновые кислоты, идущие на построение вирусного потомства.
Формирование (сборка) вирусов. Синтезированные вирусные нуклеиновые кислоты и белки обладают способностью специфически «узнавать» друг друга и при достаточной их концентрации самопроизвольно соединяются.
Выход вирусов из клетки. Различают два основных типа выхода вирусного потомства из клетки.
Первый тип — взрывной —одновременный выход большого количества вирусов. При этом клетка быстро погибает. Характерен для вирусов без суперкапсидной оболочки.
Второй тип — почкование. Он присущ вирусам, имеющим суперкапсидную оболочку. На заключительном этапе сборки нуклеокапсиды сложно устроенных вирусов фиксируются на клеточной плазматической мембране и постепенно выпячивают ее. В результате выпячивания образуется «почка», содержащая нуклеокапсид. Затем «почка» отделяется от клетки.
Время, необходимое для осуществления полного цикла репродукции вирусов, варьирует от 5—6 ч (вирусы гриппа, натуральной оспы и др.) до нескольких суток (вирусы кори, аденовирусы и др.). Образовавшиеся вирусы способны инфицировать новые клетки и проходить в них указанный выше цикл репродукции.
Особенности репродукции ДНК- и РНК- вирусов
Репликация ДНК-вируса
У ДНК-содержащих вирусов репликация происходит при участии клеточной ДНК-зависимой ДНК-полимеразы. У однонитевых ДНК-содержащих вирусов сначала образуется комплементарная нить (репликативная форма), которая служит матрицей для дочерних молекул ДНК.
Трансляция ДНК-вируса
У ДНК вирусов при участии ДНКзависимой РНК-полимеразы синтезируются и-РНК, которые поступают на рибосомы клетки, где и синтезируются вирусные белки. У двунитевых ДНК-содержащих вирусов, геном которых транскрибируется в цитоплазме клетки хозяина это собственный геномный белок. Вирусы, геномы которых транскрибируются в ядре клетки, используют содержащуюся там клеточную ДНК-зависимую РНК-полимеразу.
РепликацияРНК-вируса. Репликация вирусных РНК осуществляется через репликативную форму РНК. Эта форма синтезируется благодаря РНК-зависимой РНК-полимеразе - это геномный белок, который есть у всех РНК-содержащих вирусов.
Репликативная форма РНК минус-нитевых вирусов служит не только матрицей для синтеза дочерних молекул вирусной РНК (минус нитей), но и выполняет функции и-РНК, т.е. идет на рибосомы и обеспечивает синтез вирусных белков (трансляция).
У плюс-нитевых РНК-содержащих вирусов функцию трансляции выполняют ее копии, синтез которых осуществляется через репликативную форму (минус-нить) при участии вирусных РНК-зависимых РНК-полимераз.
У реовирусов имеется уникальный механизм транскрипции. Он обеспечивается специфическим вирусным ферментом - ревертазой (обратной транскриптазой), и называется обратной транскрипцией. Суть ее состоит в том, что в начале на матрице вирусной РНК при участии обратной транскрипции образуется транскрипт, представляющий собой одну нить ДНК. На нем с помощью клеточной ДНК-зависимой ДНК-полимеразы синтезируется вторая нить и формируется двунитевой ДНК-транскрипт. С него обычным путем через образование и-РНК происходит реализация информации вирусного генома.
36. Типы взаимодействия вирусов с клеткой: продуктивный, абортивный, интегративный, примеры
Продуктивный тип— завершается образованием нового поколения вирионов и гибелью (лизисом) зараженных клеток (цитолитическая форма). Некоторые вирусы выходят из клеток, не разрушая их (нецитолитическая форма).
Абортивный тип— не завершается образованием новых вирионов, поскольку инфекционный процесс в клетке прерывается на одном из этапов. (вирус гепатита D)
Интегративный тип— характеризуется встраиванием (интеграцией) вирусной ДНК в виде провируса в хромосому клетки и их совместным сосуществованием (совместная репликация). Характерен для для вируса гепатита В, ВИЧ, умеренных ДНК-содержащих бактериофагов, онкогенных вирусов,
37. Классификация клеточных культур, применяемых в вирусологии, способы получения.
Культуры клеток готовят из тканей животных или человека. Культуры подразделяют на первичные (неперевиваемые),полуперевиваемые и перевиваемые.
Приготовление первичной культуры клеток складывается из таких этапов: измельчения ткани, разъединения клеток путем трипсинизации, отмывания полученной однородной суспензии изолированных клеток от трипсина с последующим суспендированием клеток в питательной среде, обеспечивающей их рост, например в среде 199 с добавлением телячьей сыворотки крови.
Перевиваемые культуры в отличие от первичных адаптированы к условиям, обеспечивающим им постоянное существование invitro, и сохраняются на протяжении нескольких десятков пассажей. Перевиваемые однослойные культуры клеток приготовляют из злокачественных и нормальных линий клеток, обладающих способностью длительно размножаться invitro в определенных условиях. К ним относятся злокачественные клетки HeLa, первоначально выделенные из карциномы шейки матки, Нер-3 (из лимфоидной карциномы), а также нормальные клетки амниона человека, почек обезьяны и др.
К полуперевиваемым культурам относятся диплоидные клетки человека. Они представляют собой клеточную систему, сохраняющую в процессе 50 пассажей (до года) диплоидный набор хромосом, типичный для соматических клеток используемой ткани. Диплоидные клетки человека не претерпевают злокачественного перерождения и этим выгодно отличаются от опухолевых.
38. Бактериофаги. Морфология и структурные особенности. Фазы взаимодействия фага с бактериальной клеткой
Бактериофаги – вирусы бактерий. Фаги, как и просто организованные вирусы человека, состоят из нуклеиновой кислоты (ДНК или РНК) и белковой оболочки - капсида. В зависимости от формы, структурной организации и типа нуклеиновой кислоты фаги подразделяют на несколько морфологических типов.
К I типу относятся нитевидные ДНК-содержащие фаги, взаимодействующие с мужскими особями бактерий. Геном фагов представлен однонитевой ДНК, заключенной в спиральный капсид.
II тип включает мелкие РНК-содержащие и однонитевые ДНК-содержащие фаги, геном которых находится внутри икосаэдрического капсида (головки) с аналогом отростка.
К III типу относятся икосаэдрические фаги с коротким отростком, содержащие двунитевую ДНК.
IV и V типы - сложные по морфологии ДНК-содержащие фаги, имеющие форму сперматозоида: икосаэдрический капсид головки соединен с длинным хвостовым отростком.
V тип фагов отличается от VI типа тем, что чехол их отростков способен к сокращению.
Классификация бактериофагов
По специфичности
-
Полифаги – фаги, лизирующие близкородственные бактерии. -
Монофаги – фаги, способные взаимодействовать с бактериями одного вида (видоспецифические). -
Типовые фаги – фаги, вызывающие лизис отдельных вариантов определенного вида бактерий.
По назначению
1. Лечебно-профилактические применяют местно в виде орошения, полоскания, примочек путем аппликации на раневую или ожоговую поверхность и парентерально, фаги можно вводить в полости: брюшную, плевральную, суставную и в полостные органы. Также вводят энтерально, т.е. через рот и ректально. Защитное свойство фага длиться 5-7 суток.
2. Диагностические применяют в диагностической практике с целью идентификации чистой культуры микроба-возбудителя, выделенного от больного до вида, до фаговара, а также для косвенного определения патогенных микроорганизмов в объектах внешней среды или в выделениях больных при постановке реакции нарастания титра фага (РНТФ).
Фазы взаимодействия фага с бактериальной клеткой.
Адсорбция бактериофага на фагоспецифических рецепторах клетки.
Инъекция фаговой нуклеиновой кислоты в клетку хозяина.
Совместная репликация фаговой и бактериальной нуклеиновой кислоты.
Деление клетки
Далее бактериофаг может развиваться по двум моделям: лизогенный либо литический путь.
Умеренные бактериофаги после деления клетки находятся в состоянии профага (Лизогения).
Вирулентные бактериофаги развиваются по Литической модели: Нуклеиновая кислота фага направляет синтез ферментов фага, используя для этого белоксинтезирующий аппарат бактерии. Фаг тем или иным способом инактивирует ДНК и РНК хозяина, а ферменты фага совсем расщепляют её; РНК фага «подчиняет» себе клеточный аппарат синтеза белка.
Нуклеиновая кислота фага реплицируется, и направляет синтез новых белков оболочки. Образуются новые частицы фага в результате спонтанной самосборки белковой оболочки (капсид) вокруг фаговой нуклеиновой кислоты; под контролем РНК фага синтезируется лизоцим.
Лизис клетки: клетка лопается под воздействием лизоцима