Файл: Общая микробиология.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 03.02.2024

Просмотров: 393

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Раздел 1.Общая микробиология.

2. Начальный период развития микробиологии (А. Левенгук идр.).

3.Работы Л. Пастера и Р. Коха. Их значение в становлении и развитии микробиологии.

5.Морфология бактерий. Основные формы, постоянные и непостоянные структуры бактериальнойклетки.

7.Различия вструктуре грамположительных и грамотрицательных бактерий. Протопласты, сферопласты и L-формы бактерий.

Свойства протопластов и сферопластов:

Свойства L-форм:

8.Особенности строения актиномицетов. Общие признаки с бактериями и грибами. Патогенные представители.

9.Особенности строения спирохет, их классификация. Общие признаки с бактериями и простейшими. Патогенныепредставители.

10.Особенности строения риккетсий. Общие признаки с бактериями и вирусами, патогенныепредставители.

11.Особенности строения хламидий. Общие признаки с бактериями и вирусами, патогенныепредставители.

12.Морфология и структура микоплазм, патогенныепредставители.

Микоплазмы относятся к клас­су Mollicutes,который включает 3 порядка: Acholeplasmatales, Mycoplasmatales, Anaeroplasmatales.

13.Морфология простейших, их классификация. Патогенныепредставители.

14.Питание бактерий. Механизмы транспорта питательных веществ в бактериальнуюклетку.

Механизмы транспорта

15. Классификация бактерий по типам питания (аутотрофы, гетеротрофы, сапрофиты, облигатные и факультативные паразиты) и источникам энергии (фототрофы и хемотрофы). Примеры.

16.Факторы роста. Ауксотрофы и прототрофы.

18.Методы изучения ферментативной активности бактерий и использование ее для идентификациибактерий.

19.Пигменты бактерий, классификация по растворимости в воде. Примеры, их значение.

Значение пигментов:

20.Основные типы биологического окисления субстрата бактериями. Аэробы, факультативные анаэробы, микроаэрофилы, анаэробы.Примеры.

39. Типы взаимодействия фагов с бактериальной клеткой. Вирулентные и умеренные фаги. Профаги. Лизогения. Фаговая конверсия. Дефектные фаги.

Раздел 2. Основы генетики микроорганизмов.

Мутации у бактерий. Классификация по происхождению и характеру изменений в первичной структуреДНК.

В пределах одного репликона сайт-специфическая рекомбинация участвует также в переключении активности генов.

Рекомбинация у бактерий является конечным этапом передачи генетического материала между бактериями, которая осуществляется тремя механизмами: конъюгацией, трансдукцией и трансформацией.

В обмене генетической информацией трансорфмация играет незначительную роль.

Протекает в 3 стадии:

1. адсорбция двуцепочечной ДНК на участках клеточной стенки компетентных клеток

2. ферментативное расщепление связавшейся ДНК в некоторых случайно расположенных местах с образованием фрагментов 4-5*106D

Трансдукция – перенос бактериофагом в заражаемую клетку фрагментов генетического материала клетки, исходно содержавшей бактериофаг.

Типы трансдукции:

Свойства трансдуцирующих фаговых частиц:

1.Частицы несут часть ДНК фага, то есть не являются функциональными вирусами

2. Подобно прочим дефектным вирусам, частицы не способны к репликации.

3. Трансдуцирующие фаги могут содержать какую-либо часть хромосомы хозяина с генами, дающими реципиентной бактерии некоторые преимущества

4. Феномен трансдукции может быть использован для картирования бактериальной хромосомы, если следовать тем же принципам, что и при картировании с использованием феномена трасформации

Плазмиды могут раостраняться по вертикали (при клеточном делении) и по горизонтали, прежде всего путем конъюгационного переноса.

Существуют плазмиды:

Автономные – существуют в цитоплазме бактерий, способны самостоятельно репродуцироваться, в клетке может присутствовать несколько их копий.

Функции плазмид:

1. регуляция метаболизма бактериальной клетки посредством встраивания в поврежденный геном и восстановления его функций

2. кодирующие – появление новой генетической информации и проявление новых свойств:

- устойчивость к антибиотикам

- продукцию факторов патогенности

- способность к синтезу антибиотических веществ

- образование колицинов

- расщеплене сложных органических веществ

- образование ферментов рестрикции и модификации

Группы плазмид и их характеристика:

R- плазмиды – кодируют устойчивость к лекарственным препаратам и к тяжелым металлам.

Плазмиды бактериоциногении – кодируют синтез бактериоцинов – белковых продуктов, вызывающих гибель бактерий того же или близких видов. Часто выявлят у грамотрицательных палочек.

Плазмиды патогенности – контролируют вирулентные свойства многих видов, особенно энтеробактерий.

По типу передачи:

Неконъюгативные (нетрансмиссивные) -несодержат области tra-генов, не способны к самостоятельной передаче генетического материала в другие бактериальные клетки.

Механизм превращения R+-клетками антибиотиков в неактивную форму связан с действием на них специфических ферментов, кодируемых R-плазмидой.

С действием R-плазмид часто бывает связан тот факт, что некоторые бактериальные заболевания с трудом поддаются лечению при помощи известных на данный момент антибиотиков.

Раздел 3. Микрофлора организма человека, объектов внешней среды.

Микрофлора человека, классификация (аутохтонная, аллохтонная и заносная). Факторы, определяющие количественный и качественный составмикрофлоры.

55.Микрофлора мочевыделительного тракта. Категории чистотывлагалища.

56.Микрофлора кишечника. Факторы, оказывающие губительные действия на микрофлору тонкого кишечника. Мукозная и просветнаямикрофлора.

58. Эубиотики. Природа, механизм действия. Бактериоцины. Практическое использование эубиотиков.

Действие на микроорганизмы химических веществ. Дезинфекция. Механизмы действия дезинфицирующихвеществ.

61 Распространение микроорганизмов в окружающей среде. Понятие о микробных биоценозах. Типы взаимодействия между микробами в биоценозе Действие на микроорганизмы биологических факторов.

62. Симбиотические взаимоотношения (метабиоз, комменсализм, мутуализм, сателлитизм, синергизм). Примеры. Антагонистические взаимоотношения (антибиоз, конкуренция, хищничество, паразитизм).Примеры.

63. Антибиотики. Способы получения.Классификация по происхождению,спектру действия.Примеры.

64. Антибиотики. Классификация по механизму действия. Примеры.

66 Механизмы лекарственной устойчивости бактерий (первичные, приобретенные, хромосомные, внехромосомные),г-гены.

77. Источники и пути передачи инфекционныхболезней.

78. Динамика и периоды развития инфекционного заболевания. Исход инфекционного заболевания.

84.Биологический метод микробиологической диагностики, назначение и принцип метода.

95. Возбудитель скарлатины. Таксономия. Свойства. Иммунитет, определение его напряжённости. Принципы и методы лабораторной диагностики.

96.. Пневмококки, таксономия. Свойства. Серологические группы. Вызываемые заболевания. Принципы и методы лабораторной диагностики.

102. Синегнойная палочка. Таксономия. Свойства. Вызываемые заболевания. Роль во внутрибольничных инфекциях. Принципы и методы лабораторнойдиагностики.

112. Кампилобактерии. Таксономия. Морфология. Культуральные особенности. Вызываемые заболевания. Эпидемиология. Принципы лабораторнойдиагностики.

Имеют О- и Н-антигены, по которым под разделяются на 60 сероваров. Обладают плазмидами, с которыми связана антибиотикоустойчивость.

Факторыпатогенности. Эндотоксин, связанный с ЛПС, а также продукция некоторыми штаммами холероподобного энтеротоксина и цитотоксина.

Резистентность. Невысокая. Чувствительны к факторам внешней среды, физическим и химическим факторам, в том числе к нагреванию и дезинфектантам. Устойчивы к целомуряду

антибиотиков, но чувствительны к эритромицину и ципрофлоксацину.

Эпидемиология.Зооантропоноз.Важнейший источник инфекции — сельскохозяйственные животные и

Специфическая профилактика. Не разработана. Проводятся противоэпидемические мероприятия как при сальмонеллезах.

Возбудители эпидемического и эндемического возвратных тифов. Таксономия. Свойства. Дифференциация. Эпидемиология. Патогенез. Принципы и методы лабораторной диагностики с учетом периодазаболевания.

124.Возбудители болезни Лайма. Принципы и методы лабораторной диагностики.

125.Возбудитель лептоспироза. Таксономия. Свойства. Культуральные особенности. Принципы и методы лабораторной диагностики, препараты специфической профилактики и лечения.

Хламидии. Таксономия, свойства, вызываемые заболевания. Роль хламидий в патологии беременности и поражения плода. Патогенез, иммунитет. Принципы и методы лабораторнойдиагностики.

Парамиксовирусы. Вирусы парагриппа человека 1-5 типы. Характеристика, вызываемые ими заболевания. Эпидемиология. Принципы и методы лабораторной диагностики.

Морфология и физиология.

Тогавирусы. Вирус краснухи. Свойства. Эпидемиология. Патогенез, последствия для беременных. Принципы и методы лабораторной диагностики. Специфическая профилактика.

136. Буньявирус. Вирус ГЛПС. Характеристика. Эпидемиология, патогенез, иммунитет. Осложнения. Принципы и методы микробиологической диагностики.

139. Пикорнавирусы. Вирусы Коксаки и ЕСНО. Характеристика. антигенная структура. Серотипы. Вызываемые ими инфекции, клинические проявления. Эпидемиология. Принципы и методы лабораторнойдиагностики.

 140. Пикорнавирусы. Вирус гепатита А, характеристика. Эпидемиология, патогенез. Принципы и методы лабораторной диагностики. Специфические маркеры вируса. Специфическая профилактика.

Особенности иммунитета:

Антитела вырабатываются на антиген НВs суперкапсида. Имеются антитела к -антигену, но они неэффективны, так как вирус покрыт суперкапсидом.

Специального лечения нет.

Специфическая профилактика - такая же как для гепатита В (вакцины против гепатита В)

Диагностика

Материал - кровь

Для диагностики гепатита D применяют:

1) Обнаружение -антигенов

2) Обнаружение антител к -антигену.

Это осуществляется с помощью иммуноферментного и радиоиммунного метода

157.Вирус ветреной оспы и опоясывющего лишая. Таксономия. Характеристика. Эпидемиология. Особенности иммунитета. Принципы и методы лабораторной диагностики. Специфическая профилактика.

158.Поксвирус. Вирус натуральной оспы. Свойства. Тельца Гварниери. Эпидемиология. Патогенез. Принципы лабораторной диагностики. Специфическая профилактика.

160.Онкогенные вирусы; классификация и характеристика.


Репродукция состоит из таких стадий: адсорбция вируса на клетке; проникновение вируса в клетку; «раздевание» вируса; биосинтез вирусных компонентов в клетке; формирование вирусов;выход вирусов из клетки.
Адсорбция. Это прикрепление вирусов к поверхности клетки. Это высокоспецифический процесс. Вирус адсорбируется на рецепторах.
Проникновение в клетку. Существует два способа проникновения вирусов животных в клетку: виропексис и слияние вирусной оболочки с клеточной мембраной. При виропексисе происходит впячивание клеточной мембраны и образование вакуоли, которая содержит вирусную частицу. Вакуоль может транспортироваться в любом направлении в разные участки цитоплазмы или ядро клетки. Процесс слияния осуществляется одним из поверхностных вирусных белков капсидной или суперкапсидной оболочки.
«Раздевание». Удаление защитных вирусных оболочек и освобождение внутреннего компонента вируса. Конечными продуктами «раздевания» являются сердцевина, нуклеокапсид или нуклеиновая кислота вируса.
Биосинтез компонентов вируса. Проникшая в клетку вирусная нуклеиновая кислота несет генетическую информацию, которая конкурирует с генетической информацией клетки. Она дезорганизует работу клеточных систем, подавляет собственный метаболизм клетки и заставляет ее синтезировать новые вирусные белки и нуклеиновые кислоты, идущие на построение вирусного потомства.
Формирование (сборка) вирусов. Синтезированные вирусные нуклеиновые кислоты и белки обладают способностью специфически «узнавать» друг друга и при достаточной их концентрации самопроизвольно соединяются.
Выход вирусов из клетки. Различают два основных типа выхода вирусного потомства из клетки.
Первый тип — взрывной —одновременный выход большого количества вирусов. При этом клетка быстро погибает. Характерен для вирусов без суперкапсидной оболочки.
Второй тип — почкование. Он присущ вирусам, имеющим суперкапсидную оболочку. На заключительном этапе сборки нуклеокапсиды сложно устроенных вирусов фиксируются на клеточной плазматической мембране и постепенно выпячивают ее. В результате выпячивания образуется «почка», содержащая нуклеокапсид. Затем «почка» отделяется от клетки.
Время, необходимое для осуществления полного цикла репродукции вирусов, варьирует от 5—6 ч (вирусы гриппа, натуральной оспы и др.) до нескольких суток (вирусы кори, аденовирусы и др.). Образовавшиеся вирусы способны инфицировать новые клетки и проходить в них указанный выше цикл репродукции.

Особенности репродукции ДНК- и РНК- вирусов
Репликация ДНК-вируса

У ДНК-содержащих вирусов репликация происходит при участии клеточной ДНК-зависимой ДНК-полимеразы. У однонитевых ДНК-содержащих вирусов сначала образуется комплементарная нить (репликативная форма), которая служит матрицей для дочерних молекул ДНК.
Трансляция ДНК-вируса
У ДНК вирусов при участии ДНКзависимой РНК-полимеразы синтезируются и-РНК, которые поступают на рибосомы клетки, где и синтезируются вирусные белки. У двунитевых ДНК-содержащих вирусов, геном которых транскрибируется в цитоплазме клетки хозяина это собственный геномный белок. Вирусы, геномы которых транскрибируются в ядре клетки, используют содержащуюся там клеточную ДНК-зависимую РНК-полимеразу.
РепликацияРНК-вируса. Репликация вирусных РНК осуществляется через репликативную форму РНК. Эта форма синтезируется благодаря РНК-зависимой РНК-полимеразе - это геномный белок, который есть у всех РНК-содержащих вирусов.
Репликативная форма РНК минус-нитевых вирусов служит не только матрицей для синтеза дочерних молекул вирусной РНК (минус нитей), но и выполняет функции и-РНК, т.е. идет на рибосомы и обеспечивает синтез вирусных белков (трансляция).
У плюс-нитевых РНК-содержащих вирусов функцию трансляции выполняют ее копии, синтез которых осуществляется через репликативную форму (минус-нить) при участии вирусных РНК-зависимых РНК-полимераз.
У реовирусов имеется уникальный механизм транскрипции. Он обеспечивается специфическим вирусным ферментом - ревертазой (обратной транскриптазой), и называется обратной транскрипцией. Суть ее состоит в том, что в начале на матрице вирусной РНК при участии обратной транскрипции образуется транскрипт, представляющий собой одну нить ДНК. На нем с помощью клеточной ДНК-зависимой ДНК-полимеразы синтезируется вторая нить и формируется двунитевой ДНК-транскрипт. С него обычным путем через образование и-РНК происходит реализация информации вирусного генома.

36. Типы взаимодействия вирусов с клеткой: продуктивный, абортивный, интегративный, примеры
Продуктивный тип— завершается образованием нового поколения вирионов и гибелью (лизисом) зараженных клеток (цитолитическая форма). Некоторые вирусы выходят из клеток, не разрушая их (нецитолитическая форма).
Абортивный тип— не завершается образованием новых вирионов, поскольку инфекционный процесс в клетке прерывается на одном из этапов. (вирус гепатита D)


Интегративный тип— характеризуется встраиванием (интеграцией) вирусной ДНК в виде провируса в хромосому клетки и их совместным сосуществованием (совместная репликация). Характерен для для вируса гепатита В, ВИЧ, умеренных ДНК-содержащих бактериофагов, онкогенных вирусов,


37. Классификация клеточных культур, применяемых в вирусологии, способы получения.
Культуры клеток готовят из тканей животных или человека. Культуры подразделяют на первичные (неперевиваемые),полуперевиваемые и перевиваемые.
Приготовление первичной культуры клеток складывается из таких этапов: измельчения ткани, разъединения клеток путем трипсинизации, отмывания полученной однородной суспензии изолированных клеток от трипсина с последующим суспендированием клеток в питательной среде, обеспечивающей их рост, например в среде 199 с добавлением телячьей сыворотки крови.
Перевиваемые культуры в отличие от первичных адаптированы к условиям, обеспечивающим им постоянное существование invitro, и сохраняются на протяжении нескольких десятков пассажей. Перевиваемые однослойные культуры клеток приготовляют из злокачественных и нормальных линий клеток, обладающих способностью длительно размножаться invitro в определенных условиях. К ним относятся злокачественные клетки HeLa, первоначально выделенные из карциномы шейки матки, Нер-3 (из лимфоидной карциномы), а также нормальные клетки амниона человека, почек обезьяны и др.
К полуперевиваемым культурам относятся диплоидные клетки человека. Они представляют собой клеточную систему, сохраняющую в процессе 50 пассажей (до года) диплоидный набор хромосом, типичный для соматических клеток используемой ткани. Диплоидные клетки человека не претерпевают злокачественного перерождения и этим выгодно отличаются от опухолевых.

38. Бактериофаги. Морфология и структурные особенности. Фазы взаимодействия фага с бактериальной клеткой
Бактериофаги – вирусы бактерий. Фаги, как и просто организованные вирусы человека, состоят из нуклеиновой кислоты (ДНК или РНК) и белковой оболочки - капсида. В зависимости от формы, структурной организации и типа нуклеиновой кислоты фаги подразделяют на несколько морфологических типов.
К I типу относятся нитевидные ДНК-содержащие фаги, взаимодействующие с мужскими особями бактерий. Геном фагов представлен однонитевой ДНК, заключенной в спиральный капсид.

II тип включает мелкие РНК-содержащие и однонитевые ДНК-содержащие фаги, геном которых находится внутри икосаэдрического капсида (головки) с аналогом отростка.
К III типу относятся икосаэдрические фаги с коротким отростком, содержащие двунитевую ДНК.
IV и V типы - сложные по морфологии ДНК-содержащие фаги, имеющие форму сперматозоида: икосаэдрический капсид головки соединен с длинным хвостовым отростком.
V тип фагов отличается от VI типа тем, что чехол их отростков способен к сокращению.
Классификация бактериофагов
По специфичности

  1. Полифаги – фаги, лизирующие близкородственные бактерии.

  2. Монофаги – фаги, способные взаимодействовать с бактериями одного вида (видоспецифические).

  3. Типовые фаги – фаги, вызывающие лизис отдельных вариантов определенного вида бактерий.


По назначению

1. Лечебно-профилактические применяют местно в виде орошения, полоскания, примочек путем аппликации на раневую или ожоговую поверхность и парентерально, фаги можно вводить в полости: брюшную, плевральную, суставную и в полостные органы. Также вводят энтерально, т.е. через рот и ректально. Защитное свойство фага длиться 5-7 суток.
2. Диагностические применяют в диагностической практике с целью идентификации чистой культуры микроба-возбудителя, выделенного от больного до вида, до фаговара, а также для косвенного определения патогенных микроорганизмов в объектах внешней среды или в выделениях больных при постановке реакции нарастания титра фага (РНТФ).
Фазы взаимодействия фага с бактериальной клеткой.

Адсорбция бактериофага на фагоспецифических рецепторах клетки.

Инъекция фаговой нуклеиновой кислоты в клетку хозяина.

Совместная репликация фаговой и бактериальной нуклеиновой кислоты.

Деление клетки

Далее бактериофаг может развиваться по двум моделям: лизогенный либо литический путь.

Умеренные бактериофаги после деления клетки находятся в состоянии профага (Лизогения).

Вирулентные бактериофаги развиваются по Литической модели: Нуклеиновая кислота фага направляет синтез ферментов фага, используя для этого белоксинтезирующий аппарат бактерии. Фаг тем или иным способом инактивирует ДНК и РНК хозяина, а ферменты фага совсем расщепляют её; РНК фага «подчиняет» себе клеточный аппарат синтеза белка.

Нуклеиновая кислота фага реплицируется, и направляет синтез новых белков оболочки. Образуются новые частицы фага в результате спонтанной самосборки белковой оболочки (капсид) вокруг фаговой нуклеиновой кислоты; под контролем РНК фага синтезируется лизоцим.


Лизис клетки: клетка лопается под воздействием лизоцима