ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 16.10.2024

Просмотров: 113

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

1 билет

2 билет

3 билет

4 билетИсточник: https://gomolog.ru/reshebniki/1-kurs/shimanovich-2014/367.html

5 билет

6 билет

7 билет

8 билет

9 билет

Гибридизация электронных облаков

10 билет

11 билет

12 билет

13 билет

14 билет

15 билет

16 билет

17 билет

18 билет

Водородная связь

19 билет

Термодинамическая система и ее состояния

Параметры термодинамической системы

Функци состояния термодинамической системы

Термодинамические процессы

20 билет

Термодинамические функции состояния: энергия Гиббса и энергия Гельмгольца. Критерии самопроизвольного протекания процессов. Способы расчета изменеия энергии Гиббса в ходе химической реакции.

21 билет

22 билет

23 билет

24 билет

25 билет

26 билет

27 билет

Химическая кинетика

28 билет

29 билет

30 билет

12. Химическое равновесие. Обратимые и необратимые реакции.

31 билет

32 билет

33 билет

34 билет

35 билет

36 билет

37 билет

38 билет

39 билет

40 билет

41 билет

42 билет

43 билет

Растворы.

Характеристика растворов. Процесс растворения.

Гидраты и кристаллогидраты.

44 билет

45 билет

46 билет

47 билет

Осмос. Осмотическое давление. Закон Вант-Гоффа. Зависит ли осмотическое давление от природы растворённого вещества?

48 билет

Давление насыщенного пара над раствором. Закон рауля.

49 билет

50 билет

51 билет

52 билет

53 билет

54 билет

55 билет

56 билет

57 билет

58 билет

Свойства кислот, оснований и солей с точки зрения теории электролитической диссоциации.

3.Реакции нейтрализации

59 билет

60 билет

61 билет

62 билет

63 билет

64 билет

65 билет

66 билет

67 билет

68 билет

Электролиз расплавов и растворов солей. Катодные и анодные процессы. Законы Фарадея.

Электролиз расплавов

Электролиз водных растворов

Законы электролиза

Выход по току

69 билет

70 билет

71 билет

72 билет

73 билет

74 билет

75 билет

76 билет

Лекция по теме «Химические источники тока»

77 билет

Коррозия металлов и методы защиты от коррозии

78 билет

79 билет

80 билет

81 билет

82 билет

83 билет

84 билет

85 билет

29 билет


Необратимые реакции протекают до конца, а в обратимых ни одно из реагирующих веществ не расходуется полностью, потому что обратимая реакция может протекать как в прямом, так и в обратном направлении.

Когда скорости прямой и обратной реакций становятся одинаковыми, наступает химическое равновесие.

Химическим равновесием называется такое состояние химической системы, при котором количества исходных веществ и продуктов не меняются со временем.

 - кинетическое условие химического равновесия; ∆G=0 – термодинамическое условие химического равновесия.

 ;   – закон действующих масс для обратимой реакции в момент равновесия.

Константа химического равновесия – это количественная характеристика химического равновесия.

Численное значение К характеризует положение равновесия при данной температуре и не меняется с изменением концентраций реагирующих веществ.

Константа равновесия представляет собой постоянную величину, показывающую соотношение между концентрациями продуктов реакции и реагентов.

Величина K зависит от природы реагирующих веществ и от температуры.

Чем больше k, тем больше выход реакции.

Физический смысл константы равновесия: она показывает, во сколько раз скорость прямой реакции больше скорости обратной при данной температуре и концентрациях всех реагирующих веществ, равных 1 моль/л.

Система находится в состоянии равновесия до тех пор, пока внешние условия сохраняются постоянными.

В гетерогенных реакциях в выражение константы равновесия входят концентрации только газов и жидкостей.

30 билет


Катализом называют явление изменения скорости химической реакции под воздействием катализаторов. Реакции, протекающие с участием катализаторов, называют каталитическими.

Гомогенный – это такой катализ, когда катализатор и все реагирующие вещества находятся в одной фазе.


Гомогенный катализ в растворах наиболее часто вызывается действием водородных и гидроксильных ионов.  Каталитическое действие кислот было открыто в 1811 г. К. Кирхгофом. Инверсия сахара, омыление сложных эфиров, гидролитическое разложение амидов, ацеталей и много других реакций в растворах ускоряются действием водородных ионов, причем с повышением их концентрации примерно пропорционально увеличивается и скорость.

Главным положением гомогенного катализа является представление о том, что в ходе реакции образуются неустойчивые промежуточные соединения катализатора с реагирующими веществами, которые затем распадаются с регенерацией катализатора

К гомогенному катализу относятся многие реакции кислотно-основного взаимодействия, реакции комплексообразования, многочисленные реакции гидрирования, сульфидирования, реакции, катализированные ферментами.

К гетерогенным относятся каталитические процессы, протекающие на границе раздела фаз Т-Г, Т-Ж. При гетерогенном катализе реакция протекает на поверхности катализатора. Поэтому площадь поверхностного слоя катализатора и его строение определяют активность катализатора.

Гетерогенный катализ находит большее применение в промышленности, чем гомогенный.

В качестве гетерогенных катализаторов используют переходные металлы, металлы первой группы, фосфорную кислоту.

Чаще всего для анализа кинетических схем ферментативного катализа используют метод стационарных концентраций (k2 >> k1). Применение этого метода к простейшей схеме катализа дает уравнение Михаэлиса-Ментен:

где wmax = k2. [E]0 - максимальная скорость реакции (при бесконечно большой концентрации субстрата),

- константа Михаэлиса. Эта константа равна концентрации субстрата, при которой скорость реакции равна половине максимальной скорости. Типичные значения KM - от 10-6 до 10-1 моль/л. Константу скорости k2 иногда называют числом оборотов фермента. Она может изменяться в пределах от 10 до 108 мин-1

Во многих случаях скорость реакции резко изменяется в присутствии специальных веществ - катализаторов. Катализаторы участвуют в реакции, но в результате ее не расходуются. Катализаторы биологических процессов, протекающих в живых организмах, представляют собой белковые молекулы, которые называют ферментами, или энзимами.



12. Химическое равновесие. Обратимые и необратимые реакции.


Обратимые по направлению химические реакции – реакции, которые при данных внешних условиях могут самопроизвольно протекать как в прямом, так и в обратном направлениях

Константа химического равновесия – для обратимой реакции общего вида aA + bB = pP + qQ при постоянных внешних условиях в равновесии отношение произведений концентраций продуктов к произведению концентрации реагентов есть величина постоянная, не зависящая от химического состава системы

[P]p [Q]q

Kc = [A]a [B]b = const при p, T = const

Уравнение изотермы химической реакции:

ΔGр-я = RTln(Πc/Kc)

Уравнение изобары химической реакции

K2 ΔrH

ln K1 = R ((1/T1) – (1/T2))

Прогнозирование смещения химического равновесия. С помощью уравнения изотермы можно рассчитать G реакции при заданном значении Πc, если известна Kc реакции. И наоборот, если известна G реакции при заданном Πc, то можно рассчитать Kc.

Гомеостаз - относительное динамическое постоянство внутренней среды (крови, лимфы, тканевой жидкости) и устойчивость основных физиологических функций (кровообращения, дыхания, терморегуляции, обмена веществ и т. д.) организма человека и животных. Регуляторные механизмы, поддерживающие физиологическое состояние или свойства клеток, органов и систем целостного организма на оптимальном уровне, называются гомеостатическими.

Учение о гомеостазе - это учение о жизненных процессах, имеющих только одну цель: поддержание постоянства условий жизни во внутренней среде, как необходимый элемент свободной и независимой жизни.

Основная функция буферных систем предотвращение значительных сдвигов рН путём взаимодействия буфера как с кислотой, так и с основанием. Действие буферных систем в организме направлено преимущественно на нейтрализацию образующихся кислот.

В организме одновременно существует несколько различных буферных систем. В функциональном плане их можно разделить на бикарбонатную и небикарбонатную. Небикарбонатная буферная система включает гемоглобин, различные белки и фосфаты. Она наиболее активно действует в крови и внутри клеток.


Организм можно определить как физико-химическую систему, существующую в окружающей среде в стационарном состоянии. Именно эта способность живых систем сохранять стационарное состояние в условиях непрерывно меняющейся среды и обусловливает их выживание. Для обеспечения стационарного состояния у всех организмов - от морфологически самых простых до наиболее сложных - выработались разнообразные анатомические, физиологические и поведенческие приспособления, служащие одной цели - сохранению постоянства внутренней среды.13. Константа химического равновесия. Прогнозирование смещения химического равновесия.

13. Константа химического равновесия. Прогнозирование смещения химического равновесия.

Константа равновесия показывает во сколько раз скорость прямой реакции больше или меньше скорости обратной реакции.

Константа равновесия – это отношение произведения равновесных концентраций продуктов реакции, взятых в степени их стехиометрических коэффициентов к произведению равновесных концентраций исходных веществ, взятых в степени их стехиометрических коэффициентов.

Величина константы равновесия зависит от природы реагирующих веществ и температуры, и не зависит от концентрации в момент равновесия, поскольку их отношение – всегда величина постоянная, численно равная константе равновесия. Если гомогенная реакция идет между веществами в растворе, то константа равновесия обозначается KС, а если между газами, то KР

Смещение химического равновесия. Принцип Ле-Шателье. Состояние химического равновесия при изменении условий (температуры, давления или концентрации) может сместиться либо в сторону образования продуктов реакции, либо в сторону исходных веществ. Влияние, оказываемое на равновесную систему каким-либо внешним воздействием, можно предсказать, пользуясь принципом Ле-Шателье (принципом подвижного равновесия): если на систему, находящуюся в равновесии, воздействовать извне, то в системе усилится то из направлений процесса, которое противодействует данному воздействию